103 resultados para Spinning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method of improving yarn quality by improved incorporation of fibres into the yarn structure has been proposed and investigated. This methid enables spinning of finer, stronger, low twist, less hairy and more abarsion resistant yarns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a facile method to produce elastic conducting fibers using a continuous flow wet-spinning approach. The spun fibers were highly stretchable, similar to the elastomeric polymer used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(styrene-β-isobutylene-β-styrene)-poly(3-hexylthiophene) (SIBS-P3HT) conducting composite fibers are successfully produced using a continuous flow approach. Composite fibers are stiffer than SIBS fibers and able to withstand strains of up 975% before breaking. These composite fibers exhibit interesting reversible mechanical and electrical characteristics, which are applied to demonstrate their strain gauging capabilities. This will facilitate their potential applications in strain sensing or elastic electrodes. Here, the fabrication and characterization of highly stretchable electrically conducting SIBS-P3HT fibers using a solvent/non-solvent wet-spinning technique is reported. This fabrication method combines the processability of conducting SIBS-P3HT blends with wet-spinning, resulting in fibers that could be easily spun up to several meters long. The resulting composite fiber materials exhibit an increased stiffness (higher Young’s modulus) but lower ductility compared to SIBS fibers. The fibers’ reversible mechanical and electrical characteristics are applied to demonstrate their strain gauging capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple continuous flow wet-spinning method for assembling fibres consisting of two oppositely charged biopolymers (chitosan and carrageenan) and carbon nanotubes is reported. It was observed that the order in which the biopolymers are added, i.e. spinning chitosan into one of the carrageenans (or vice versa), affects the fibre composition as well as the resulting electrical and mechanical properties. The addition of carbon nanotubes into the fibres was found to improve Young's modulus values coupled with a significant improvement in the electrical conductivity by up to 6 orders of magnitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple continuous flow wet-spinning method to achieve mechanical reinforcement of the two oppositely charged biopolymers chitosan and gellan gum is described. The mechanical properties of these biopolymers are influenced by the order of addition. Using a facile method for mechanical reinforcement of gellan gum/chitosan fibers resulted in increases in Young's modulus, tensile strength, and toughness. Spinning gellan gum into chitosan resulted in the strongest fibers. We show that our fibers can provide a mechanical alternative for bio-fibers without the need of cross-linking. It is demonstrated that the fibers become ionically conducting in the presence of water vapor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule-precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a spinning metal wire collector was employed to continuously collect polyacrylonitrile (PAN) nanofibers produced by a disc fiber generator and coil them around a polyethylene terephthalate (PET) yarn. The obtained composite yarns exhibited a core/shell structure (PET yarn/PAN nanofibers) with nanofibers orderly arranged on the surface of the PET yarn. The electric field analysis showed that the position of metal wire had insignificant effect on the formed electric field and high intensity electric field was formed at the disc circumferential area, which provided a constant electric field for the production of uniform nanofibers. The spinning solution, spinning speed of metal wire, and winding speed were found to play an important role in producing good quality nanofiber yarns, in terms of morphology, strength, and productivity. Pure nanofiber yarns were obtained after dissolving the core yarns in a proper solvent. This method has shown potential for the mass production of nanofiber yarns for industrial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented in a renewable energy based electricity distribution system. For planning and designing a distribution system, PHEVs are one of the most important factor as it is going to be a spinning reserve of energy, and also a major load for distribution network. A dynamic load model of PHEVs is introduced here based on third order battery model. To determine the system adequacy, it is necessary to do a micro level analysis to know the PHEVs load impact on grid. Scope of such analysis will cover the performance of wind and solar generation with dynamic PHEVs load, as well as the stability analysis of the power grid to demonstrate that it is important to consider the dynamics of PHEVs load in a renewable energy based distribution network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic nuclear polarisation (DNP) has been used to obtain magic angle spinning (14)N(OT) (nitrogen-14 overtone) solid-state NMR spectra from several model amino acids, with both direct and indirect observation of the (14)N(OT) signal. The crystalline solids were impregnated with biradical solutions of organic liquids that do not dissolve the crystalline phase. The bulk phase was then polarized via(1)H spin diffusion from the highly-polarized surface (1)H nuclei, resulting in (1)H DNP signal enhancements of around two orders of magnitude. Cross polarisation from (1)H nuclei directly to the (14)N overtone transition is demonstrated under magic angle spinning, using a standard pulse sequence with a relatively short contact time (on the order of 100 μs). This method can be used to acquire (14)N overtone MAS powder patterns that match closely with simulated line shapes, allowing isotropic chemical shifts and quadrupolar parameters to be measured. DNP enhancement also allows the rapid acquisition of 2D (14)N(OT) heteronuclear correlation spectra from natural abundance powder samples. (1)H-(14)N(OT) HETCOR and (13)C-(14)N(OT) HMQC pulse sequences were used to observe all single-bond H-N and C-N correlations in histidine hydrochloride monohydrate, with the spectra obtained in a matter of hours. Due to the high natural abundance of the (14)N isotope (99.6%) and the advantages of observing the overtone transition, these methods provide an attractive route to the observation of C-N correlations from samples at natural isotopic abundance and enable the high resolution measurement of (14)N chemical shifts and quadrupolar interaction parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is a challenge to retain the high stretchability of an elastomer when used in polymer composites. Likewise, the high conductivity of organic conductors is typically compromised when used as filler in composite systems. Here, it is possible to achieve elastomeric fiber composites with high electrical conductivity at relatively low loading of the conductor and, more importantly, to attain mechanical properties that are useful in strain-sensing applications. The preparation of homogenous composite formulations from polyurethane (PU) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that are also processable by fiber wet-spinning techniques are systematically evaluated. With increasing PEDOT:PSS loading in the fiber composites, the Young's modulus increases exponentially and the yield stress increases linearly. A model describing the effects of the reversible and irreversible deformations as a result of the re-arrangement of PEDOT:PSS filler networks within PU and how this relates to the electromechanical properties of the fibers during the tensile and cyclic stretching is presented. Conducting elastomeric fibers based on a composite of polyurethane (PU) and PEDOT:PSS, produced by a wet-spinning method, have high electrical conductivity and stretchability. These fibers can sense large strains by changes in resistance. The PU/PEDOT:PSS fiber is optimized to achieve the best strain sensing. PU/PEDOT:PSS fibers can be produced on a large scale and integrated into conventional textiles by weaving or knitting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple fiber spinning method used to fabricate elastomeric composite fibers with outstanding mechanical performance is demonstrated. By taking advantage of the large size of as-prepared graphene oxide sheets (in the order of tens of micrometers) and their liquid crystalline behavior, elastomeric composite fibers with outstanding low strain properties have been fabricated without compromising their high strain properties. For example, the modulus and yield stress of the parent elastomer improved by 80- and 40-fold, respectively, while maintaining the high extensibility of ∼400% strain inherent to the parent elastomer. This outstanding mechanical performance was shown to be dependent upon the GO sheet size. Insights into how both the GO sheet size dimension and dispersion parameters influence the mechanical behavior at various applied strains are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hairiness is an important quality parameter of spun yarns. It not only affects the quality of yarns, but also the weaving and knitting performance of yarns as well as the quality of the resultant fabrics. Various developments regarding yarn hairiness have been reported in the last decade. These cover aspects such as hairiness measurement, modeling, simulation, spinning modifications and post spinning treatments to reduce hairiness. This study is an attempt to critically review all significant recent developments regarding yarn hairiness. Further possibilities of research and future work are also briefly discussed.