84 resultados para MACHINING TI-6AL-4V ALLOY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous titanium (Ti) and Ti alloys are important scaffold materials for bone tissue engineering. In the present study, a new type of porous Ti alloy scaffold with biocompatible alloying elements, that is, niobium (Nb) and zirconium (Zr), was prepared by a space-holder sintering method. This porous TiNbZr scaffold with a porosity of 69% exhibits a mechanical strength of 67MPa and an elastic modulus of 3.9GPa, resembling the mechanical properties of cortical bone. To improve the osteoconductivity, a calcium phosphate (Ca/P) coating was applied to the surface of the scaffold using a biomimetic method. The biocompatibility of the porous TiNbZr alloy scaffold before and after the biomimetic modification was assessed using the SaOS2 osteoblast–like cells. Cell culture results indicated that the porous TiNbZr scaffold is more favorable for cell adhesion and proliferation than its solid counterpart. By applying a Ca/P coating, the cell proliferation rate on the Ca/P-coated scaffold was significantly improved. The results suggest that high-strength porous TiNbZr scaffolds with an appropriate osteoconductive coating could be potentially used for bone tissue engineering application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium–niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by Xray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO2 and Nb2O5 formed on the TiNb alloy surface and hydrated to Ti(OH)4 and Nb(OH)5, respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 ºC for 12 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examines the influence of different contents and types of process control agent (PCA), i.e., stearic acid (SA) and ethylene-bis-stearamide (EBS), on the microstructural evolution and characteristics of Ti-16Sn-4Nb (wt pct) alloy powders and bulk samples. The characterization of the powders and bulk samples was carried out by using chemical analysis, optical microscopy, scanning electron microscopy (SEM) combined with energy-dispersive spectrometry (EDS), and X-ray diffractometry. Results indicated that the powder recovered from the ball milling containers increased with increasing amounts of SA and EBS. Furthermore, adding more SA or EBS to the powder mixture resulted in a considerably smaller particle size, with a flaky-shaped morphology for the given ball milling time. Also, a slightly higher effectiveness was found for EBS when compared to SA. Meanwhile, the addition of both SA and EBS led to a delay in the alloy formation during mechanical alloying (MA) and caused contamination of the material with mainly carbon (C) and oxygen (O). An optimum amount of 1 wt pct PCA led to a good balance between cold welding and fracturing, and thus favored the formation of the titanium alloy. The microstructural observation of the bulk alloy showed a homogeneous distribution of fine Nb-rich ß-phase colonies within the α-Ti matrix with the addition of PCA less than 1 wt pct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Al70Ni10Ti10Zr5Ta5 amorphous alloy powder was fabricated by mechanical alloying. The phase structure and characteristic temperatures of the alloy were determined by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. The glass transition behavior and crystallization kinetics were analyzed using Lasocka and Kissinger functions. The results show that the alloy has a higher crystallization temperature, a higher effective activation energy of crystallization and a wider supercooled liquid region than the previously reported values, suggesting a high thermal stability and promising applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, titanium (Ti) and titanium-zirconium (TiZr) alloy samples fabricated through powder metallurgy were surface modified by alkali-heat treatment and calcium (Ca)-ion-deposition. The alteration of the surface morphology and the chemistry of the Ti and TiZr after surface modification were examined. The bioactivity of the Ti and TiZr alloys after the surface modification was demonstrated. Subsequently, the cytocompatibility of the surface modified Ti and TiZr was evaluated via in vitro cell culture using human osteoblast-like cells (SaOS2). The cellular attachment, adhesion and proliferation after cell culture for 14 days were characterized by scanning electron microscopy (SEM) and MTT assay. The relationship between surface morphology and chemical composition of the surface modified Ti and TiZr and cellular responses was investigated. Results indicated that the surface-modified Ti and TiZr alloys exhibited excellent in vitro cytocompatibility together with satisfactory bioactivity. Since osteoblast adhesion and proliferation are essential prerequisites for a successful implant in vivo, these results provide evidence that Ti and TiZr alloys after appropriate surface modification are promising biomaterials for hard tissue replacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow curve behaviour and microstructure evolution of commercially pure titanium (CP-Ti) through uniaxial hot compression was investigated at 850 °C and a strain rate of 0.1/s. Electron back scattered diffraction (EBSD) was employed to characterize the microstructure and crystallographic texture development for different thermomechanical conditions. The stress-strain curves of CP-Ti alloy under hot compression displayed a typical flow behaviour of metals undergoing dynamic recrystallization (DRX), which resulted in grain refinement. The critical strain for the onset of DRX was 0.13 using the double differentiation analysis technique. It was also revealed that the texture was markably altered during hot deformation. © (2014) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machining of titanium is quite difficult and expensive. Heat generated in the process of cutting does not dissipate quickly, which affects tool life. In the last decade ultra fine grained (UFG) titanium has emerged as an option for substitution for more expensive titanium alloys. Extreme grain refinement can be readily performed by severe plastic deformation techniques. Grain refinement of a material achieved in this way was shown to change its mechanical and physical properties. In the present study, the microstructure evolution and the shear band formation in chips of coarse grained and UFG titanium machined to three different depths and three different feeding rates was investigated. A change in thermal characteristics of commercial purity Ti with grain refinement was studied by comparing heating/cooling measurements with an analytical solution of the heat transfer boundary problem. It was demonstrated that an improvement in the machinability can be expected for UFG titanium. © 2012 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of a machined finish plays a major role in the performance of milling operations, good surface quality can significantly improve fatigue strength, corrosion resistance, or creep behaviour as well as surface friction. In this study, the effect of cutting parameters and cutting fluid pressure on the quality measurement of the surface of the crest for threads milled during high speed milling operations has been scrutinised. Cutting fluid pressure, feed rate and spindle speed were the input parameters whilst minimising surface roughness on the crest of the thread was the target. The experimental study was designed using the Taguchi L32 array. Analysing and modelling the effective parameters were carried out using both a multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). These were shown to be highly adept for such tasks. In this paper, the analysis of surface roughness at the crest of the thread in high speed thread milling using a high accuracy optical profile-meter is an original contribution to the literature. The experimental results demonstrated that the surface quality in the crest of the thread was improved by increasing cutting speed, feed rate ranging 0.41-0.45 m/min and cutting fluid pressure ranging 2-3.5 bars. These outcomes characterised the ANN as a promising application for surface profile modelling in precision machining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inferior surface quality is a significant problem faced by machinist. The purpose of this study is to present a surface texture analysis undertaken as part of machinability assessment of Super Austenitic Stainless Steel alloy-AL6XN. The surface texture analysis includes measuring the surface roughness and investigating the microstructural behaviour of the machined surfaces. Eight milling trials were conducted using combination of cutting parameters under wet machining. An optical profilometer (non-contact), was used to evaluate the surface texture at three positions. The surface texture was represented using the parameter, average surface roughness. Scanning Electron Microscope was utilised to inspect the machined surface microstructure and co relate with the surface roughness results. Results showed that maximum roughness values recorded at the three positions in the longitudinal direction (perpendicular to the machining grooves) were 1.21 μm (trial 1), 1.63 μm (trial 6) and 1.68 μm (trial 7) respectively whereas the roughness values were greatly reduced in the lateral direction. Also, results showed that the feed rate parameter significantly influences the roughness values compared to the other cutting parameters. The microstructure of the machined surfaces was distorted by the existence of cracks, deformed edges and bands and wear deposition due to machining process.