203 resultados para Lithium salt


Relevância:

20.00% 20.00%

Publicador:

Resumo:

27Al, 31P and 7Li NMR measurements have been performed on lithium conducting ceramics based on the LiTi2(PO4)3 structure with Al, V and Nb metal ions substituted for either Ti or P within the framework NASICON structure. The 27Al magic angle spinning NMR measurements have revealed that, although Al is intended to substitute for octahedral Ti sites, additional substitution into tetrahedral environments (presumably phosphorous sites) occurs with increasing amount of Al addition. This tetrahedral substitution appears to occur more readily in the presence of vanadium, in Li1+xAlxTi2−x(PO4)2.9(VO4)0.1, whereas similar niobium additions (in place of vanadium) appear to stifle tetrahedral substitution. 7Li static NMR spectra reveal quadrupolar structure with Cq approximately 42 kHz, largely independent of substitution. Measurement of the 7Li central transition linewidth at room temperature reveals a relatively mobile lithium species (300–900 Hz) with linewidth tending to decrease with Al substitution and increase with increasing V or Nb. This new structural information is discussed in the context of ionic conduction in these ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage–power sources with enhanced safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable lithium batteries have long been considered an attractive alternative power source for a wide variety of applications. Safety and stability1 concerns associated with solvent-based electrolytes has necessitated the use of lithium intercalation materials (rather than lithium metal) as anodes, which decreases the energy storage capacity per unit mass. The use of solid lithium ion conductors - based on glasses, ceramics or polymers - as the electrolyte would potentially improve the stability of a lithium metal anode while alleviating the safety concerns. Glasses and ceramics conduct via a fast ion mechanism, in which the lithium ions move within an essentially static framework. In contrast, the motion of ions in polymer systems is similar to that in solvent-based electrolytes - motion is mediated by the dynamics of the host polymer, thereby restricting the conductivity to relatively low values. Moreover, in the polymer systems, the motion of the lithium ions provides only a small fraction of the overall conductivity2, which results in severe concentration gradients during cell operation, causing premature failure3. Here we describe a class of materials, prepared by doping lithium ions into a plastic crystalline matrix, that exhibit fast lithium ion motion due to rotational disorder and the existence of vacancies in the lattice. The combination of possible structural variations of the plastic crystal matrix and conductivities as high as 2 3 1024 S cm21 at 60 8C make these materials very attractive for secondary battery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasticizer on the ubiquitous ion-pairing observed in polymer electrolytes has been investigated using FTIR as a probe of the local environment of the triflate ion in sodium and lithium triflate based electrolytes. Plasticizers having a range of properties, such as, propylene carbonate, and dimethyl formamide (DMF), have been investigated in the pure state for comparison with the polymer (a random copolymer of ethylene oxide at propylene oxide (mol ratio 3: 1)). The different plasticizers exhibited strikingly different effects on the triflate ion bands normally observed in polyether salt systems. In particular, the cation associated triflate ion bands at 1288 and 1248 cm−1 and the band at 1272 cm−1 which has variously been assigned to the free ion and also to the strongly aggregated anion, are different. PC produces a rapid disappearance of the “free” ion band in favour of the monodentate ion pair. On the other hand, DMF strongly enhances the band near 1270 cm−1 at salt concentrations higher than 0.7 mol kg−1. These observations are discussed in terms of recent ab initio calculations of the triflate vibrational bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous polymer/salt mixtures based on polyvinyl alcohol and poly(hydroxyethylacrylate) and poly(hydroxyethylmethacrylate) are described. The polyvinylalcohol materials have been prepared by a solvent free hot pressing technique as well as the traditional solvent casting method. The hot pressing technique allows the production of samples which are genuinely free of solvents and thereby has allowed an assessment in this work of the effect of residual solvent on conductivity. The acrylate materials were prepared by direct polymerization of monomer/salt mixtures, thus avoiding the need for solvents. These materials have glass transitions around or well above room temperature, but nonetheless have conductivities as high as 10−7 S/cm at room temperature. The temperature and composition dependence of conductivity are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite electrolytes of the lithium-ion-conducting ceramic Li1.3Al0.3Ti1.7(PO4)3 and polyetherurethane/lithium triflate polymer electrolyte have been prepared. Microscopy has shown that adhesion between the ceramic and polymer phases is poor, with gaps up to 1 μm at the interface. When dry, the composites are no more conductive than the pure polymer electrolyte. Exposing the samples to the vapour of solvents such as DMF, acetonitrile or water produces a significant increase in conductivity, over and beyond simple plasticization of the polymer. Pretreating the ceramic with a compatibilizing agent improves adhesion at the interface with the polymer, but decreases overall conductivity in the case investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

7Li solid state NMR has been used to characterize lithium aluminium titanium phosphate and lithium lanthanum titanate ceramics. Both materials have high ionic mobilities at room temperature and this is reflected in their static 7Li powder patterns. In the case of the phosphate based ceramic, a narrow Lorentzian peak is observed above 300 K, which narrows further with increasing temperature. The accompanying quadrupolar structure, with CQ (quadrupolar coupling constant) ~ 40 kHz, suggests that the lithium ions are hopping rapidly between equivalent, high electric field gradient sites. The 27Al and 31P magic angle spinning (MAS) spectra reveal an asymmetric phosphorus peak and two distinct aluminium resonances. The room temperature powder pattern of Li0.33La0.57TiO3 shows a dipolar broadened peak which narrows quite suddenly at 310 K revealing quadrupolar satellites with CQ ~ 900 Hz. A second lithium site is also observed in this material, as indicated by a further, weaker quadrupolar structure (CQ ~ 40 kHz).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) is a technique that allows the probing of the dynamics of specific magnetically active nuclei. In the present study a polyethylene glycol network containing varying concentrations of LiClO4 have been studied using 7Li NMR relaxation techniques. A plasticiser, tetraglyme, has been added to several samples to improve the mobility of the polymer and thus of the ionic species. The effects of tetraglyme and salt concentration on the cationic mobility and environment have been investigated using T1 and T2 relaxation experiments, with the presence of two cationic species of differing relaxation times (and possibly mobility) reported. The results are discussed with relevance to conductivity measurements made on similar samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations in NaI solutions, where the solvent has been represented by the Stockmayer fluid, were performed as a function of temperature, salt concentration, and solvent dipole strength. At higher temperatures contact ion pairs become more prevalent, regardless of solvent strength. An examination of the temperature dependence of the potential of mean force demonstrates the entropic nature of this effect. The transport properties calculated in the simulations are dependent on the balance between solvent dielectric constant and ion charge. In systems with a large solvent dipole moment, the ions appear to be independently mobile, and deviations from Nernst–Einstein behavior are small. In systems of smaller solvent dipole moment or greater ion charge, the ions form clusters, and large deviations from Nernst–Einstein behavior are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping lithium bis(trifluoromethanesulfonyl)amide (Li[NTf2]) into the N-ethyl,N′-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) plastic crystal material has previously indicated order of magnitude enhancements in ion transport and conductivity over pure [C2mpyr][NTf2]. Recently, conductivity enhancements in this ionic plastic crystal induced by SiO2 nanoparticles have also been reported. In this work the inclusion of SiO2 nanoparticles in Li ion doped [C2mpyr][NTf2] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy, NMR spectroscopy and scanning electron microscopy (SEM). Solid state 1H NMR indicates that the addition of the nanoparticles increases the mobility of the [C2mpyr] cation and positron lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion, especially with 10 wt% SiO2. Thus, the substantial drop in ion conductivity observed for this doped nanocomposite material was surprising. This decrease is most likely due to the decrease in mobility of the [NTf2] anion, possibly by its adsorption at the SiO2/grain boundary interface and concomitant decrease in mobility of the Li ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work lithium modified silica (Li-SiO2) nano-particles were synthesized and used as a single ion lithium conductor source in gel electrolytes. It was found that Li-SiO2 exhibited good compatibility with DMSO, DMA/EC (a mixture of N,N-dimethyl acetamide and ethylene carbonate) and the ionic liquid, N-methyl-N-propyl pyrrolidinium bis(trifluoromethylsulfonyl) amide ([C3mpyr][NTf2]). Several gel electrolytes based on Li-SiO2 were obtained. These gel electrolytes were investigated by DSC, solid state NMR, conductivity measurements and cyclic voltammetry. Conductivities as high as 10−3 S/cm at room temperature were observed in these nano-particle gel electrolytes. The results of electrochemical tests showed that some of these materials were promising for using as lithium conductive electrolytes in electrochemical devices, with high lithium cycling efficiency evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zwitterionic compounds such as those based on 1-butylimidazolium-3-(n-butanesulfonate) have previously been shown to have positive effects on the transport properties of polyelectrolytes. The addition of the zwitterion has been found to, in some cases, increase the dissociation of the lithium ion and enhance the conductivity by almost an order of magnitude. In this work, we report the effects of adding the above-mentioned zwitterion into the polyelectrolyte gel system poly(lithium methacrylate-co-N,N-dimethyl acrylamide); the anionic group being a stronger base leads to different behaviour for this copolymer compared to previous work. Polyelectrolyte gels based on dimethyl sulfoxide and polyether solvents were investigated to determine the breadth of applicability of the zwitterion in improving lithium ion transport. Impedance spectroscopy and pulse field gradient-NMR diffusion indicate an increase in the number of available charge carriers with zwitterion addition in some gel systems, however, the effect is not universal.