85 resultados para HOLLOW CAPSULES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the study, the strengthening effect of aluminium foam in thin-walled aluminium tubes subject to bending load in investigated experimentally and numerically. Bending tests are conducted on foam filler, hollow tube and foam-filled tube. The finite element method is used as well to get deeper insight into the crush failure modes via focusing on the influence from wall thickness of the tube. The obtained information is useful to optimally design foam-filled tubes as energy absorbing devices in automotive engineering. The optimisation results can be implemented to find an optimum foam-filled tube that absorbs the same energy as the optimal hollow tube but with much less weight. © (2014) Trans Tech Publications, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m(2) g(-1), and the total pore volume is about 1.17 cm(3) g(-1). The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of biomaterials in a biological environment is largely influenced by the surface properties of the biomaterials. In particular, grafted targeting ligands significantly impact the subsequent cellular interactions. The utilisation of a grafted epidermal growth factor (EGF) is effective for targeted delivery of drugs to tumours, but the amount of these biological attachments cannot be easily quantified as most characterization methods could not detect the extremely low amount of EGF ligands grafted on the surface of nanoparticles. In this study, hollow mesoporous silica nanoparticles (HMSNs) were functionalized with amine groups to conjugate with EGFs via carbodiimide chemistry. Time of flight secondary ion mass spectrometry (ToF-SIMS), a very surface specific technique (penetration depth <1.5 nm), was employed to study the binding efficiency of the EGF to the nanoparticles. Principal component analysis (PCA) was implemented to track the relative surface concentrations of EGFs on HMSNs. It was found that ToF-SIMS combined with the PCA technique is an effective method to evaluate the immobilization efficiency of EGFs. Based on this useful technique, the quantity and density of the EGF attachments that grafted on nanoparticles can be effectively controlled by varying the EGF concentration at grafting stages. Cell experiments demonstrated that the targeting performance of EGFR positive cells was affected by the number of EGFs attached on HMSNs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modular approach has been developed for the synthesis of rigid linear di- and tritopic ligands based on a fused [6]polynorbornane scaffold. The design provides up to three sites for installing functionality, including both "ends" and a "central" position with the advantage that each region can be independently addressed during synthesis. To illustrate the utility of the approach, both pyridyl and picolyl units were incorporated to provide six new ligands, with centers and ends either matched or mismatched. Indeed, both [M2 L4 ] cages with endohedral functionality and [M3 L4 ] complexes were cleanly produced from these ligands with assembled structures confirmed by using (1) H NMR spectroscopy, HRMS, and molecular modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Omega-3 fatty acids and probiotic bacteria were co-encapsulated in a single whey protein isolate (WPI)-gum Arabic (GA) complex coacervate microcapsule. Tuna oil (O) and Lactobacillus casei 431 (P) were used as models of omega-3 and probiotic bacteria, respectively. The co-microcapsules (WPI-P-O-GA) and L.casei containing microcapsules (WPI-P-GA) were converted into powder by using spray and freeze drying. The viability of L.casei was significantly higher in WPI-P-O-GA co-microcapsules than in WPI-P-GA. The oxidative stability of tuna oil was significantly higher in spray dried co-capsules than in freeze dried ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plasma gas bubble-in-liquid method for high production of selectable reactive species using a nanosecond pulse generator has been developed. The gas of choice is fed through a hollow needle in a point-to-plate bubble discharge, enabling improved selection of reactive species. The increased interface reactions, between the gas-plasma and water through bubbles, give higher productivity. H2O2 was the predominant species produced using Ar plasma, while predominantly NO3- and NO2 were generated using air plasma, in good agreement with the observed emission spectra. This method has nearly 100% selectivity for H2O2, with seven times higher production, and 92% selectivity for NO3-, with nearly twice the production, compared with a plasma above the water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interconnected microspheres of V2O5 composed of ultra-long nanobelts are synthesized in an environmental friendly way by adopting a conventional anodization process combined with annealing. The synthesis process is simple and low-cost because it does not require any additional chemicals or reagents. Commercial fish-water is used as an electrolyte medium to anodize vanadium foil for the first time. Electron microscopy investigation reveals that each belt consists of numerous nanofibers with free space between them. Therefore, this novel nanostructure demonstrates many outstanding features during electrochemical operation. This structure prevents self-aggregation of active materials and fully utilizes the advantage of active materials by maintaining a large effective contact area between active materials, conductive additives, and electrolyte, which is a key challenge for most nanomaterials. The electrodes exhibit promising electrochemical performance with a stable discharge capacity of 227 mAh·g–1 at 1C after 200 cycles. The rate capability of the electrode is outstanding, and the obtained capacity is as high as 278 at 0.5C, 259 at 1C, 240 at 2C, 206 at 5C, and 166 mAh·g–1 at 10C. Overall, this novel structure could be one of the most favorable nanostructures of vanadium oxide-based cathodes for Li-ion batteries. [Figure not available: see fulltext.]