95 resultados para Griffin, Clive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animals respond to environmental variation by exhibiting a number of different behaviours and/or rates of activity, which result in corresponding variation in energy expenditure. Successful animals generally maximize efficiency or rate of energy gain through foraging. Quantification of all features that modulate energy expenditure can theoretically be modelled as an animal energetic niche or power envelope; with total power being represented by the vertical axis and n-dimensional horizontal axes representing extents of processes that affect energy expenditure. Such an energetic niche could be used to assess the energetic consequences of animals adopting particular behaviours under various environmental conditions. This value of this approach was tested by constructing a simple mechanistic energetics model based on data collected from recording devices deployed on 41 free-living Magellanic penguins (Spheniscus magellanicus), foraging from four different colonies in Argentina and consequently catching four different types of prey. Energy expenditure was calculated as a function of total distance swum underwater (horizontal axis 1) and maximum depth reached (horizontal axis 2). The resultant power envelope was invariant, irrespective of colony location, but penguins from the different colonies tended to use different areas of the envelope. The different colony solutions appeared to represent particular behavioural options for exploiting the available prey and demonstrate how penguins respond to environmental circumstance (prey distribution), the energetic consequences that this has for them, and how this affects the balance of energy acquisition through foraging and expenditure strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Good estimates of metabolic rate in free‐ranging animals are essential for understanding behavior, distribution, and abundance. For the critically endangered leatherback turtle (Dermochelys coriacea), one of the world’s largest reptiles, there has been a long‐standing debate over whether this species demonstrates any metabolic endothermy. In short, do leatherbacks have a purely ectothermic reptilian metabolic rate or one that is elevated as a result of regional endothermy? Recent measurements have provided the first estimates of field metabolic rate (FMR) in leatherback turtles using doubly labeled water; however, the technique is prohibitively expensive and logistically difficult and produces estimates that are highly variable across individuals in this species. We therefore examined dive duration and depth data collected for nine free‐swimming leatherback turtles over long periods (up to 431 d) to infer aerobic dive limits (ADLs) based on the asymptotic increase in maximum dive duration with depth. From this index of ADL and the known mass‐specific oxygen storage capacity (To2) of leatherbacks, we inferred diving metabolic rate (DMR) as . We predicted that if leatherbacks conform to the purely ectothermic reptilian model of oxygen consumption, these inferred estimates of DMR should fall between predicted and measured values of reptilian resting and field metabolic rates, as well as being substantially lower than the FMR predicted for an endotherm of equivalent mass. Indeed, our behaviorally derived DMR estimates ( mL O2 min−1 kg−1) were times the resting metabolic rate measured in unrestrained leatherbacks and times the average FMR for a reptile of equivalent mass. These DMRs were also nearly one order of magnitude lower than the FMR predicted for an endotherm of equivalent mass. Thus, our findings lend support to the notion that diving leatherback turtles are indeed ectothermic and do not demonstrate elevated metabolic rates that might be expected due to regional endothermy. Their capacity to have a warm body core even in cold water therefore seems to derive from their large size, heat exchangers, thermal inertia, and insulating fat layers and not from an elevated metabolic rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The movements, diving behaviour and thermal environment occupied by 4 adult female olive ridley turtles Lepidochelys olivacea in northern Australia were determined through satellite telemetry. Patterns of behaviour recorded were rather unusual compared to other sea turtles in that dives were mainly deep, largely benthic and exceptionally long (>2 h) in some cases, characteristics typical of over-wintering turtles in colder environments. One individual occupied shallow coastal foraging zones, while the others foraged far from land (probably on the seabed) in relatively deep water (>100 m). Individuals performed long dives (frequently >100 min), but from the short post-dive intervals we suggest that these dives were mainly aerobic. Maximum dive depth recorded was 200 ± 20 m (mean maximum depths ranged from 20.1 to 46.7 m across individuals; n = 17328 dives in total; depths ≥3 m were considered ‘dives’) and the maximum duration was 200 ± 20 min (mean durations ranged from 24.5 to 48.0 min across individuals). Temperature profiles indicate that turtles experienced temperatures ranging from 23 to 29°C at the surface, with the lowest temperature recorded (18.7°C) at a depth of 98 m. Only 6.9% of the dives were in water <20°C. From time-allocation at depth (TAD) scores, we demonstrated that many dives reaching the known or inferred sea bottom were U-shaped, but there was no apparent diel signal in dive depth. This suggests that many benthic dives were not associated exclusively with resting behaviour and likely had a foraging component as well. The ability to perform long benthic dives allows this species to exploit deeper benthic environments in addition to the shallow coastal areas more generally occupied by adult hard-shelled sea turtles (e.g. green and hawksbill turtles). Deep benthic dives also occur in certain marine mammals (e.g. narwhals) and sea birds (e.g. rockhopper penguins) and therefore seem to be a general foraging strategy exploited by animals that can perform long dives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is expected to have a number of impacts on biological communities including range extensions and contractions. Recent analyses of multidecadal data sets have shown such monotonic shifts in the distribution of plankton communities and various fish species, both groups for which there is a large amount of historical data on distribution. However, establishing the implications of climate change for the range of endangered species is problematic as historic data are often lacking. We therefore used a different approach to predict the implications of climate change for the range of the critically endangered planktivourous leatherback turtle (Dermochelys coriacea). We used long-term satellite telemetry to define the habitat utilization of this species. We show that the northerly distribution limit of this species can essentially be encapsulated by the position of the 15°C isotherm and that the summer position of this isotherm has moved north by 330 km in the North Atlantic in the last 17 years. Consequently, conservation measures will need to operate over ever-widening areas to accommodate this range extension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is perhaps the most pressing and urgent environmental issue facing the world today. However our ability to predict and quantify the consequences of this change is severely limited by the paucity of in situ oceanographic measurements. Marine animals equipped with sophisticated oceanographic data loggers to study their behavior offer one solution to this problem because marine animals range widely across the world’s ocean basins and visit remote and often inaccessible locations. However, unlike the information being collected from conventional oceanographic sensing equipment, which has been validated, the data collected from instruments deployed on marine animals over long periods has not. This is the first long-term study to validate in situ oceanographic data collected by animal oceanographers. We compared the ocean temperatures collected by leatherback turtles (Dermochelys coriacea) in the Atlantic Ocean with the ARGO network of ocean floats and could find no systematic errors that could be ascribed to sensor instability. Animal-borne sensors allowed water temperature to be monitored across a range of depths, over entire ocean basins, and, importantly, over long periods and so will play a key role in assessing global climate change through improved monitoring of global temperatures. This finding is especially pertinent given recent international calls for the development and implementation of a comprehensive Earth observation system (see http://iwgeo.ssc.nasa.gov/documents.asp?s=review) that includes the use of novel techniques for monitoring and understanding ocean and climate interactions to address strategic environmental and societal needs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research was performed to determine whether it was technically feasible to use boronic acid extractants to purify and concentrate the sugars present in hemicellulose hydrolysates. Initially, five types of boronic acids (phenylboronic acid, 3,5-dimethylphenylboronic acid, 4-tert-butylphenylboronic acid, trans-β-styreneboronic acid or naphthalene-2-boronic acid) dissolved in an organic diluent (Shellsol® 2046 or Exxal® 10) containing the quaternary amine Aliquat® 336 were tested for their ability to extract sugars (fructose, glucose, sucrose and xylose) from a buffered, immiscible aqueous solution. Naphthalene- 2-boronic acid was found to give the greatest extraction of xylose regardless of which diluent was used. Trials were then conducted to extract xylose and glucose from solutions derived from the dilute acid hydrolysis of sugar cane bagasse and to then strip the loaded organic solutions using an aqueous solution containing hydrochloric acid. This produced a strip solution in which the xylose concentration had been increased over 7× that of the original hydrolysate while reducing the concentration of the undesirable acid-soluble lignin by over 90%. Hence, this process can be exploited to produce high concentration xylose solutions suitable for direct fermentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on an 18-month high school action research study and how this could be used to inform course designers and educators in other sectors of education. The high school study focused on the integration of social media into the face-to-face classroom. It used action research in a Victorian public high school in a total of 13 of the author’s classes. Data collection was in three phases over an eighteen month period. This involved the teacher creating one online social network and sharing this dynamic environment with up to seven classes in a semester. Blogs, groups, chats, discussion forums, Web 2.0 tools and a wide range of student-generated content were shared online, within a class and between classes. Students were encouraged to interact and to share their thoughts and ideas about planning as well as using their out-of-school skills and knowledge. Each topic, within each class, was one action research cycle. A number of the findings from this high school study were integrated into post-secondary education subjects at Deakin University. In an era of social media, this high school study has provided insight into how, why, where and when students learn, and by blending many of the findings into Deakin University courses, this study offers a new way of approaching teaching and learning in the broader notion of tertiary education and training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geolocators were deployed on waders in Australia for a third successive year, in Feb/Apr 2011 including on Eastern Curlew and Sanderling for the first time. Retrieval rates, in the 2011/12 austral summer, varied markedly between species. Technical performance of the geolocators was better than in previous years. However units on Greater Sand Plovers, migrating to breeding grounds in the Gobi Desert, China/Mongolia, again behaved erratically, and exhibited symptoms suggesting extraneous electromagnetic interference. Generally, for each species studied, the results confirm earlier indications that the first step of northward migration from Australia is a long non-stop flight. Subsequent movements to breeding areas are usually shorter with up to three stopovers in SE Asia or Siberia. Similarly southward migration strategies include at least one long nonstop flight, though this is usually the second (or later) leg of the journey. The timing of migration appears to be particularly related to breeding latitude. Eastern Curlews, which breed at relatively southern latitudes, depart from SE Australia from early March, reach the breeding grounds and lay eggs in April, set off on return migration in early June and, after a long stopover in the Yellow Sea, arrive back in SE Australia in early August. In contrast arctic-breeding Ruddy Turnstones do not depart from SE Australia until mid/late April and do not arrive back at their non-breeding locations until October, with the last individuals (which have taken a trans-Pacific route) not returning until late November/early December. Recorded migration speeds (assuming the birds take a great circle route) were quite variable, ranging from 32 to 84 km/h, presumably due to wind conditions. They generally averaged nearer to 50 km/h rather than the 60–70 km/h which waders are known to be capable of achieving and which has been the basis of some past flight range calculations.