92 resultados para ETHYLENE-OCTENE COPOLYMER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed long-term trends in ethylene oxide (EtO) worker exposures for the purposes of exposure surveillance and evaluation of the impacts of the Occupational Safety and Health Administration (OSHA) 1984 and 1988 EtO standards. We obtained exposure data from a large commercial vendor and processor of EtO passive dosimeters. Personal samples (87 582 workshift [8-hr] and 46 097 short-term [15-min] samples) from 2265 US hospitals were analyzed for time trends from 1984 through 2001 and compared with OSHA enforcement data. Exposures declined steadily for the first several years after the OSHA standards were set. Workshift exposures continued to taper off and have remained low and constant through 2001. However, since 1996, the probability of exceeding the short-term excursion limit has increased. This trend coincides with a decline in enforcement of the EtO standard. Results indicate the need for renewed intervention efforts to preserve gains made following the passage and implementation of the 1984 and 1988 EtO standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medical surveillance requirements of the Occupational Safety and Health Administration's (OSHA) ethylene oxide (EtO) standard became effective in 1985. However, little is known about the nature of the response of EtO users to this regulatory requirement. In an effort to begin to understand this, we conducted a survey of EtO health and safety in Massachusetts hospitals (n = 92). We determined the cumulative incidence of provision of EtO medical surveillance, the characteristics of the surveillance interventions provided, and the clinical findings of EtO medical surveillance efforts in Massachusetts hospitals. From 1985 to 1993, medical surveillance for EtO exposure was provided one or more times in 62% of EtO-using hospitals. Sixty-five percent of EtO medical surveillance providers reported performance of all five medical surveillance procedures required by OSHA's EtO standard. Medical surveillance provider certification in occupational medicine or nursing, and a greater extent of coverage of written medical surveillance policies, were related to higher likelihoods of fulfillment of OSHA-required procedures. Twenty-seven percent of medical surveillance providers reported detection of EtO-related symptoms or conditions, ranging from mucous membrane irritation to peripheral neuropathy. These findings reveal widespread implementation of OSHA-mandated EtO medical surveillance, with concomitant incomplete fulfillment of OSHA-specified procedures. From the provider-based survey, we estimate that one or more workers at 19% of EtO-using Massachusetts hospitals have experienced EtO-related health effects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macromolecular assembly of block copolymers into numerous nanostructures resembles self-organization of proteins and cellular components found in nature. In order to mimic nature’s assemblies either to cure a disease or construct functional devices, the organization principles underpinning the emergence of complex shapes need to be understood. In the same vein, this study aimed at understanding morphology evolution in a triblock copolymer blend in aqueous solution. An ABA type amphiphilic triblock copolymer (polystyrene-b-polyethylene oxide-b-polystyrene, PS-b-PEO-b-PS) was synthesized at different compositions via atom transfer radical polymerization (ATRP) and self-assembly behavior of a binary mixture in aqueous solution was studied. Block copolymers that form worms and vesicles in its pristine state was shown to form complex morphologies such as fused rings, “jellyfish”, toroid vesicles, large compound vesicles and large lamellae after blending. The tendency of vesicle-forming block copolymer to form bilayers may be responsible for triggering complex morphologies when mixed with a worm or micelle-forming polymer. In other words, the interplay between curvature effects produced by two distinct polymers with different hydrophobic block lengths results in complex morphologies due to chain segregation within the nanostructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to overcome interfacial incompatibility issues in natural fibre reinforced polymer bio-composites, surface modifications of the natural fibres using complex and environmentally unfriendly chemical methods is necessary. In this paper, we demonstrate that the interfacial properties of cellulose-based bio-composites can be tailored through surface adsorption of polyethylene glycol (PEG) based amphiphilic block copolymers using a greener alternative methodology. Mixtures of water or water/acetone were used to form amphiphilic emulsions or micro-crystal suspensions of PEG based amphiphilic block copolymers, and their deposition from solution onto the cellulosic substrate was carried out by simple dip-coating. The findings of this study evidence that, by tuning the amphiphilicity and the type of building blocks attached to the PEG unit, the flexural and dynamic thermo-mechanical properties of cellulose-based bio-composites comprised of either polylactide (PLA) or high density polyethylene (HDPE) as a matrix, can be remarkably enhanced. The trends, largely driven by interfacial effects, can be ascribed to the combined action of the hydrophilic and hydrophobic components of these amphiphiles. The nature of the interactions formed across the fibre-matrix interface is discussed. The collective outcome from this study provides a technological template to significantly improve the performance of cellulose-based bio-composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-linked poly(ethylene glycol) diacrylate (PEGDA) hydrogels with uniformly controlled nanoporous structures templated from hexagonal lyotropic liquid crystals (LLC) represent separation membrane materials with potentially high permeability and selectivity due to their high pore density and narrow pore size distribution. However, retaining LLC templated nanostructures is a challenge as the polymer gels are not strong enough to sustain the surface tension during the drying process. In the current study, cross-linked PEGDA gels were reinforced with a silica network synthesized via an in situ sol-gel method, which assists in the retention of the hexagonal LLC structure. The silica precursor does not obstruct the formation of hexagonal phases. After surfactant removal and drying, these hexagonal structures in samples with a certain amount of tetraethoxysilane (TEOS) loading are well retained while the nanostructures are collapsed in samples without silica reinforcement, leading to the hypothesis that the reinforcement provided by the silica network stabilizes the LLC structure. The study examines the conditions necessary for a sufficient and well dispersed silica network in PEGDA gels that contributes to the retention of original LLC structures, which potentially enables broad applications of these gels as biomedical and membrane materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel biodegradable pH- and salinity-responsive cellulose copolymer was prepared by grafting 2-(Dimethylamino) ethylmethacrylate (DMAEMA) onto bagasse cellulose in ionic liquid. The grafting polymerization was achieved in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) under microwave irradiation. Copolymers were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermo gravimetric analysis measurements. The results revealed that polymer chains had been successfully bonded to the cellulose backbone. Furthermore, the self-assembly of cellulose-g-DMAEMA copolymers at various salt concentrations and pH solution were investigated by means of swelling behavior measurement. It indicated that the copolymers presented dual pH and salinity-responsive properties. The synthetic strategy showed great potential in the modification of other cellulosic biomass to afford new biomaterials with desired properties. © 2014 Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A viable method of encapsulating block copolymer micelles inside vesicles using a conjugated polymer is reported in this study. Self-assembly and complexation between an amphiphilic block copolymer poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) and a rod-like conjugated polymer polyaniline (PANI) in aqueous solution were studied using transmission electron microscopy, atomic force microscopy and dynamic light scattering. The complexation and morphology transformation were driven by electrostatic interaction between PANI and the PAA block of the block copolymer. Addition of PANI to PMMA-b-PAA induced the morphology transformation from micelles to irregular vesicles through vesicles, thick-walled vesicles (TWVs) and multimicellar vesicles (MMVs). Among the observed morphologies, MMVs were observed for the first time. Morphology transformation was studied as a function of aniline/acrylic acid molar ratio ([ANI]/[AA]). Micelles were observed for the pure block copolymer, while vesicles and TWVs were observed at [ANI]/[AA] = 0.1 and 0.3, respectively. MMVs were observed at [ANI]/[AA] = 0.5 and irregular vesicles were observed for molar ratios at 0.7 and above. Clearly, a conjugated polymer like polyaniline can induce a morphology transformation even at its lower concentrations and produce complex morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a water-soluble acrylamide sulfonate copolymer for inhibiting shale hydrate formation. The copolymer, denoted as PANAA, was synthesized via copolymerization of acrylamide (AM), N,N-diallylbenzylamine (NAPA), acrylic acid (AA), and 2-(acrylamide)-2-methylpropane-1-sulfonic acid (AMPS). The performance of this new water-soluble copolymer for inhibiting shale hydration was investigated for the first time. The retention ratio of apparent viscosity of 2 wt % PANAA solution can reach 61.6% at 130 C and further up to 72.2% with 12 000 mg/L NaCl brine. The X-ray diffraction studies show that the addition of copolymer PANAA (5000 mg/L), in combination with a low loading of KCl (3 wt %), remarkably reduces the interlayer spacing of sodium montmorillonite (Na-MMT) in water from 19.04 to 15.65 Å. It has also found that these copolymer solutions, blending with KCl, can improve the retention of indentation hardness from 22% to 74% and increase the antiswelling ratio up to 84%. All results have demonstrated that the PANAA copolymer not only has excellent temperature-resistance and salt-tolerance but also exhibits a significant effect on inhibiting the hydration of clays and shale. © 2014 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ABA type amphiphilic triblock copolymer was synthesized via ATRP and sulfonation. New self-assembled morphologies such as toroidal vesicles, giant tubular vesicles, and perforated spherical vesicles were observed from triblock copolymer-polyaniline complexes in water. The mechanism of morphology transformation at different compositions was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report water-soluble complexes of an acrylamide copolymer and ionic liquids for inhibiting shale hydration. The copolymer, denoted as PAAT, was synthesised via copolymerisation of acrylamide (AM), acrylic acid (AA) and N,N-diallyl-4-methylbenzenesulfonamide (TCDAP), and the ionic liquids used were 3-methyl imidazoliumcation-based tetrafluoroborates. X-ray diffraction showed that compared with commonly used KCl, the water-soluble complex of PAAT with 2 wt% ionic liquid 1-methyl-3-H-imidazolium tetrafluoroborate (HmimBF4) could remarkably reduce the d-spacing of sodium montmorillonite in water from 19.24 to 13.16 Å and effectively inhibit clay swelling. It was also found that the PAAT-HmimBF4 complex with 2 wt% HmimBF4 could retain 75% of the shale indentation hardness and increase the anti-swelling ratio to 85%. 13C NMR revealed that there existed interactions between PAAT and HmimBF4. Moreover, the thermal stability of the PAAT-HmimBF4 complex is superior to PAAT, suggesting that this water-soluble complex can be used to inhibit clay and shale hydration in high-temperature oil and gas wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we report a novel acrylamide copolymer with antimicrobial property as an enhanced oil recovery chemical. The copolymer was synthesized from acrylamide (AM), acrylic acid (AA) and 2-((2-(acryloyloxy)ethyl)dimethylammonio)ethyl sulfite (ADMES) using oxidation-reduction initiation system. Subsequently, the copolymer AM/AA/ADMES was evaluated and characterized on several aspects such as IR, 1H NMR, intrinsic viscosity, and dissolubility. The AM/AA/ADMES solution exerted remarkable thickening ability, salt tolerance ability and viscoelasticity. In addition, the rheological properties, temperature resistance ability and long-term stability of AM/AA/ADMES were investigated systematically in the presence of sulfate-reducing bacteria and relatively low viscosity loss could be obtained compared to partially hydrolyzed polyacrylamide. On the basis of core flooding experiments, AM/AA/ADMES was found to be a valuable prospect with 10.5 resistance factor, 4.6 residual resistance factor and up to 11.0% enhanced oil recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 This thesis describes the procedure for preparing polymer nanoparticles of various morphologies via simple complexation technique. The nanoparticles observed in this study may find potential application in drug delivery, diagnostic imaging, nano reactors, catalysis and preparation of stimuli responsive materials.