145 resultados para ELECTROSPUN POLYACRYLONITRILE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyacrylontrile nanofibre yarns have been successfully produced from an electrospinning setup composing positively and negatively charged spinnerets, a rotating funnel and a yarn winder. Through hot drawing, yarns show compact morphology and improved uniformity and have a significant decrease in both yarn and fibre diameters. The hot drawing has improved the molecular orientation and crystallinity of the fibres. The yarn drawn to 5 times of its original length has been found to have the highest tensile strength and modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin (SF) from Bombyx mori has many established excellent properties and has found various applications in the biomedical field. However, some abilities or capacities of SF still need improving to meet the need for using practically. Indeed, diverse SF-based composite biomaterials have been developed. Here we report the feasibility of fabricating pantothenic acid (vitamin B5, VB5)-reinforcing SF nanofibrous matrices for biomedical applications through green electrospinning. Results demonstrated the successful loading of D-pantothenic acid hemicalcium salt (VB5-hs) into resulting composite nanofibers. The introduction of VB5-hs did not alter the smooth ribbon-like morphology and the silk I structure of SF, but significantly decreased the mean width of SF fibers. SF conformation transformed into β-sheet from random coil when composite nanofibrous matrices were exposed to 75% (v/v) ethanol vapor. Furthermore, nanofibers still remained good morphology after being soaked in water environment for five days. Interestingly, as-prepared composite nanofibrous matrices supported a higher level of cell viability, especially in a long culture period and significantly assisted skin cells to survive under oxidative stress compared with pure SF nanofibrous matrices. These findings provide a basis for further extending the application of SF in the biomedical field, especially in the personal skin-care field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) nanofiber mats prepared by an electrospinning technique were used as an active layer for making mechanical-to-electric energy conversion devices. The effects of PVDF concentration and electrospinning parameters (e.g. applied voltage, spinning distance), as well as nanofiber mat thickness on the fiber diameter, PVDF β crystal phase content, and mechanical-to-electrical energy conversion properties of the electrospun PVDF nanofiber mats were examined. It was interesting to find that finer uniform PVDF fibers showed higher β crystal phase content and hence, the energy harvesting devices had higher electrical outputs, regardless of changing the electrospinning parameters and PVDF concentration. The voltage output always changed in the same trend to the change of current output whatever the change trend was caused by the operating parameters or polymer concentration. Both voltage and current output changes followed a similar trend to the change of the β crystal phase content in the nanofibers. The nanofiber mat thickness influenced the device electrical output, and the maximum output was found on the 70 μm thick nanofiber mat. These results suggest that uniform PVDF nanofibers with smaller diameters and high β crystal phase content facilitate mechanical-to-electric energy conversion. The understanding obtained from this study may benefit the development of novel piezoelectric nanofibrous materials and devices for various energy uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The starch nanofiber mats were prepared by electrospinning, and crosslinked by deal with glutaraldehyde vapor in a sealed containers. The morphology and structure of the fibers (before and after crosslinking) were characterized by SEM and FT-IR, and the properties of the product were measured by tensile test and contact angle measurements. Test results show that, acetalization reaction occurred between the intermolecular of glutaraldehyde and starch, the morphology of crosslinked fibers can be grossly preserved compared with the uncrosslinked starch fibers, and tensile properties and water resistance of the fiber mats have been greatly improved after glutaraldehyde crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-strain elastic superhydrophobicity is highly desirable for its enhanced use performance and functional reliability in mechanically dynamic environments, but remains challenging to develop. Here we have, for the first time, proven that an elastic fibrous membrane after surface hydrophobization can maintain superhydrophobicity during one-directional (uniaxial) stretching to a strain as high as 1500% and two-direction (biaxial) stretching to a strain up to 700%. The fibrous membrane can withstand at least 1,000 cycles of repeated stretching without losing the superhydrophobicity. Stretching slightly increases the membrane air permeability and reduces water breakthrough pressure. It is highly stable in acid and base environments. Such a permeable, highly-elastic superhydrophobic membrane may open up novel applications in membrane separation, healthcare, functional textile and energy fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospun polyvinylidene fluoride (PVDF) nanofiber webs have shown great potential in making mechanical-to-electrical energy conversion devices. Previously, polyvinylidene fluoride (PVDF) nanofibers were produced either using near-field electrospinning (spinning distance < 1 cm) or conventional electrospinning (spinning distance > 8 cm). PVDF fibers produced by an electrospinning at a spinning distance between 1 and 8 cm (referred to as "short-distance" electrospinning in this paper) has received little attention. In this study, we have found that PVDF electrospun in such a distance range can still be fibers, although interfiber connection is formed throughout the web. The interconnected PVDF fibers can have a comparable β crystal phase content and mechanical-to-electrical energy conversion property to those produced by conventional electrospinning. However, the interfiber connection was found to considerably stabilize the fibrous structure during repeated compression and decompression for electrical conversion. More interestingly, the short-distance electrospun PVDF fiber webs have higher delamination resistance and tensile strength than those of PVDF nanofiber webs produced by conventional electrospinning. Short-distance electrospun PVDF nanofibers could be more suitable for the development of robust energy harvesters than conventionally electrospun PVDF nanofibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phase change material (PCM) from a mixture of plant oils was incorporated into electrospun poly(vinyl alcohol) (PVA) nanofibers using an emulsion electrospinning technique. Effects of PCM and PVA content in the emulsions on nanofiber morphology, heat properties, and phase change stability were examined. Higher PCM loadings in the nanofibers led to increased fiber diameter, gouged fiber surfaces, and higher heat enthalpies. The fibers maintained their morphological integrity even if the PCM melted. They showed reliable heat-regulating performance which can undergo at least 100 cycles of phase change. Such PCM fibers may be used for the development of thermoregulating fabrics or in passive heat storage devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogel nanofibers with high water-absorption capacity and excellent biocompatibility offer wide use in biomedical areas. In this study, hydrogel nanofibers from polyvinylpyrrolidone (PVP) and PVP/poly(acrylic acid) (PAA) blend were prepared by electrospinning and by subsequent heat treatment. The effects of post-electrospinning heat treatment and PVP/PAA ratio on hydrogel properties of the nanofibers were examined. Heat treatment at a temperature above 180°C was found to play a key role in forming insoluble and water-absorbent nanofibers. Both PVP and PVP/PAA nanofibers showed high morphology stability in water and excellent water retention capacity. The swelling ratio of PVP/PAA nanofibers declined with increasing heating temperature and decreasing PVP/PAA unit ratio. In comparison with dense casting films, these nanofiber membranes showed nearly doubled swelling ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymorphism and crystallinity of poly(vinylidene fluoride) (PVDF) membranes, made from electrospinning of the PVDF in pure N,N-dimethylformamide (DMF) and DMF/acetone mixture solutions are studied. Influence of the processing and solution parameters such as flow rate, applied voltage, solvent system, and mixture ratio, on nanofiber morphology, total crystallinity, and crystal phase content of the nanofibers are investigated using scanning electron microscopy, wide-angle X-ray scattering, differential scanning calorimetric, and Fourier transform infrared spectroscopy. The results show that solutions of 20% w/w PVDF in two solvent systems of DMF and DMF/acetone (with volume ratios of 3/1 and 1/1) are electrospinnable; however, using DMF/acetone volume ratio of 1/3 led to blockage of the needle and spinning process was stopped. Very high fraction of β-phase (∼79%-85%) was obtained for investigated nanofiber, while degree of crystallinity increased to 59% which is quite high due to the strong influence of electrospinning on ordering the microstructure. Interestingly, ultrafine fibers with the diameter of 12 and 15 nm were obtained in this work. Uniform and bead free nanofiber was formed when a certain amount of acetone was added in to the electrospinning solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal stabilization process of polyacrylonitrile (PAN) is the slowest and the most energy-consuming step in carbon fiber production. As such, in industrial production of carbonfiber, this step is considered as amajor bottleneck in the whole process. Stabilization process parameters are usually many in number and highly constrained, leading to high uncertainty. The goal of this paper is to study and analyze the carbon fiber thermal stabilization process through presenting several effective dynamic models for the prediction of the process. The key point with using dynamic models is that using an evolutionary search technique, the heat of reaction can be optimized. The employed components of the study are Levenberg–Marquardt algorithm (LMA)-neural network (LMA-NN), Gauss–Newton (GN)-curve fitting, Taylor polynomial method, and a genetic algorithm. The results show that the procedure can effectively optimize a given PAN fiber heat of reaction based on determining the proper values of heating rampand temperature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have proven that starch nanofibrous membranes with high tensile strength, water stability and non-cytotoxicity can be produced by electrospinning of starch solution and post-treatment with GTA in vapor phase. GTA vapor phase crosslinking plays a key role in forming water-stable nanofiber membrane and improving the mechanical properties. Comparing with non-crosslinked starch fibers, the crosslinked fibers are increased by nearly 10 times in tensile strength. The crosslinked starch fibrous membranes are non-cytotoxic. They may find applications in the fields of tissue engineering, pharmaceutical therapy and medical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofiber yarns are important building blocks for making three-dimensional nanostructures, e.g. through a knitting or weaving process, with better mechanical properties than nanofiber nonwovens and well-controlled fibrous construction. However, it still remains challenging to produce quality nanofiber yarns in a sufficient rate. In this study, we have proven that online stretching during electrospinning of nanofiber yarns can considerably improve fiber alignment and molecular orientation within the yarn and increase yarn tensile strength, but reduce fiber/yarn diameters. By compensating twist during online stretching, the device can prepare nanofiber yarns with different stretch levels, but maintaining the same twist multiplier. This allows us to examine the effect of stretching on fiber and yarn morphology. It was interesting to find that on increasing the stretching ratio from 0% to 95%, the yarn diameter reduced from 135.1 ± 20.3 μm to 46.2 ± 10.2 μm, and the fiber diameter reduced from 998 ± 141 nm to 631 ± 98 nm, whereas the yarn tensile strength increased from 48.2 ± 5.6 MPa to 127.7 ± 5.4 MPa. Such an advanced yarn electrospinning technique can produce nanofiber yarn with an overall yarn production rate as high as 10 m min−1. This may be useful for production of nanofiber yarns for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly and high temperature behavior of AB/B′ type block copolymer/homopolymer blends containing polyacrylonitrile (PAN) polymers were studied for the first time. Here, microphase separated nanostructures were formed in the poly(methyl methacrylate-b-polyacrylonitrile) (PMMAN) block copolymer and their blends with homopolymer PAN at various blend ratios. Additionally, these nanostructures were transformed into porous carbon nanostructures by sacrificing PMMA blocks via pyrolysis. Spherical and worm like morphologies were observed in both TEM and AFM images at different compositions. The thermal and phase behavior examinations showed good compatibility between the blend components in all studied compositions. The PAN homopolymer (B′) with a comparatively higher molecular weight than the corresponding block (B) of the block copolymer is expected to exhibit ‘dry brush’ behavior in this AB/B′ type system. This study provides a basic understanding of the miscibility and phase separation in the PMMAN/PAN system, which is important in the nanostructure formation of bulk PAN based materials with the help of block copolymers to develop advanced functional materials.