79 resultados para Caracterização in situ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, a new graphene/Cu nanoparticle composite was prepared via the in situ reduction of GO in the presence of Cu nanoparticles which was then utilized as a sacrificing template for the formation of flexible and porous graphene capacitor electrodes by the dissolution of the intercalated Cu nanoparticle in a mixed solution of FeCl<inf>3inf> and HCl. The porous RGO electrode was characterized by atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The as-prepared graphene/Cu nanoparticle composite and the pure graphene film after removal of Cu nanoparticles possessed high conductivity of 3.1 × 103 S m-1 and 436 S m-1 respectively. The porous RGO can be used as the electrode for the fabrication of supercapacitors with high gravimetric specific capacitances up to 146 F g-1, good rate capability and satisfactory electrochemical stability. This environmentally friendly and efficient approach to fabricating porous graphene nanostructures could have enormous potential applications in the field of energy storage and nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hypothesis and its experimental validation that simultaneous improvement in the hardness and corrosion resistance of aluminium can be achieved by the combination of suitable processing route and alloying additions. More specifically, the corrosion resistance and hardness of Al- xCr (x= 0-10 wt.%) alloys as produced via high-energy ball milling were significantly higher than pure Al and AA7075-T651. The improved properties of the Al- xCr alloys were attributed to the Cr addition and high-energy ball milling, which caused nanocrystalline structure, extended solubility of Cr in Al, and uniformly distributed fine intermetallic phases in the Al-Cr matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipelines to, for instance, 100 years is the application of structural health monitoring and life prediction tools that are able to provide long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step in pipeline structural health monitoring is the enhancement of technological capabilities that are required for quantifying the effects of key factors influencing buried pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating damage and disbondment, cathodic shielding. The concept of in-situ monitoring and site-specific warning of pipeline corrosion is illustrated by a case of monitoring localised corrosion under disbonded coatings using a new corrosion monitoring probe. A basic principle that underpins the use of sensors to monitor localised corrosion has been presented: Localised corrosion and coating failure are not an accidental occurrence, it occurs as the result of fundamental thermodynamic instability of a metal exposed to a specific environment. Therefore corrosion and coating disbondment occurring on a pipeline will also occur on a sensor made of the same material and exposed to the same pipeline condition. Although the exact location of localised corrosion or coating disbondment could be difficult to pinpoint along the length of a buried pipeline, the ‘worst-case scenario’ and high risk pipeline sections and sites are predictable. Sensors can be embedded at these strategic sites to collect data that contain ‘predictor features’ signifying the occurrence of localised corrosion, CP failure, coating disbondment and degradation. Information from these sensors will enable pipeline owners to prioritise site survey and inspection operations, and to develop maintenance strategy to manage aged pipelines, rather than replace them.