97 resultados para Attenuation profile


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium is a unique and effective psychotropic agent with a long-standing history of clinical use yet it is increasingly overlooked in lieu of newer agents. The purpose of the present paper was to succinctly review the therapeutic profile of lithium particularly with respect to the treatment of mood disorders and consider its unique properties and clinical utility. A comprehensive literature review pertaining to lithium was undertaken using electronic database search engines to identify relevant clinical trials, meta-analyses and Cochrane reviews. In addition articles and book chapters known to the authors were carefully reviewed, and the authors appraised published guidelines. The evidence from these sources was rated using National Health and Medical Research Council evidence levels and synthesized according to phenotype and mood states. In addition, the authors have drawn upon published guidelines and their own clinical experience. Lithium has specificity for mood disorders with proven efficacy in the treatment of both unipolar depression and bipolar disorder. The recommendations are based predominantly on Level I evidence, but its clinical use has to be tempered against potential side-effects and the need for ongoing monitoring. In practice, lithium should be considered a first-line option in bipolar disorder, especially in prophylaxis and when onset of action is not an imperative. Lithium has been in use in modern medicine for 60 years and as such has been tried and tested across the full range of mood disorders. Arguably, lithium is the only true mood stabilizer and because of its unique properties is in a class of its own.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the interaction of diet and exercise-training intensity on membrane phospholipid fatty acid (FA) composition in skeletal muscle from 36 female Sprague-Dawley rats. Animals were randomly divided into one of two dietary conditions: high-carbohydrate (64.0% carbohydrate by energy, n = 18) or high fat (78.1% fat by energy, n = 18). Rats in each diet condition were then allocated to one of three subgroups: control, which performed no exercise training; low-intensity (8 m/min) treadmill run training; or high-intensity (28 m/min) run training. All exercise-trained rats ran 1,000 m/session, 4 days/wk for 8 wk and were killed 48 h after the last training bout. Membrane phospholipids were extracted, and FA composition was determined in the red and white vastus lateralis muscles, Diet exerted a major influence on phospholipid FA composition, with the high-fat diet being associated with a significantly (P < 0.01) elevated ratio of n-6/n-3 FA for both red (2.7-3.2 vs. 1.0-1.1) and white vastus lateralis muscle (2.5-2.9 vs. 1.2). In contrast, alterations in FA composition as a result of either exercise-training protocol were only minor in comparison. We conclude that, under the present experimental conditions, a change in the macronutrient content of the diet was a more potent modulator of skeletal muscle membrane phospholipid FA composition compared with either low- or high-intensity treadmill exercise training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noccaea caerulescens (J. & C. Presl) F. K. Meyer is a metal hyperaccumulating plant which can accumulate more than 2% zinc (Zn) dry tissue mass in its aerial tissues. At this concentration Zn is toxic to most plants due to inhibition of enzyme function, oxidative damage and mineral deficiencies. In this study the elemental and metabolite profiles of N. caerulescens plants grown in four different Zn concentrations were measured. This revealed broad changes in the metabolite and elemental profiles with the hyperaccumulation of Zn. The Zn treated plants exhibited no typical signs of stress such as chlorosis or reduced biomass, however, a range of metabolic stress responses, such as the modification of galactolipids and the major membrane lipids of plastids, and increases in oxylipins, which are precursors to the signalling molecules jasmonic and abscisic acids, as well as the increased synthesis of glucosinolates, was observed. Increases in particular organic acids and the ubiquitous metal cation chelator nicotianamine were also observed. The small molecule metabolite changes observed, however, did not account for the extreme Zn concentrations in the leaf tissue showing that the increase in nicotianamine production most likely negates Fe deficiency. The elemental analyses also revealed significant changes in other essential micronutrients, in particular, significantly lower Mn concentrations in the high Zn accumulating plants, yet higher Fe concentrations. This comprehensive elemental and metabolite analysis revealed novel metabolite responses to Zn and offers evidence against organic acids as metal-storage ligands in N. caerulescens. © 2014 The Royal Society of Chemistry.