99 resultados para Abnormalities.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examined the acute effects of metformin on fatty acid (FA) metabolism in oxidative soleus (SOL) and glycolytic epitrochlearis (EPT) rodent muscle. SOL and EPT were incubated for either 30 or 180 min in the absence or presence of 2 mM metformin and with or without insulin (10 mU/ml). Metformin did not alter basal FA metabolism but countered the effects of insulin on FA oxidation and incorporation into triacylglyerol (TAG). Specifically, metformin prevented the insulin-induced suppression of FA oxidation in SOL but did not alter FA incorporation into lipid pools. In contrast, in EPT metformin blunted the incorporation of FA into TAG when insulin was present but did not alter FA oxidation. In SOL, metformin resulted in a 50% increase in AMP-activated protein kinase α2 activity and prevented the insulin-induced increase in malonyl-CoA content. In both fiber types, basal and insulin-stimulated glucose oxidation were not significantly altered by metformin. All effects were similar regardless of whether they were measured after 30 or 180 min. Because increased muscle lipid storage and impaired FA oxidation have been associated with insulin resistance in this tissue, the ability of metformin to reverse these abnormalities in muscle FA metabolism may be a part of the mechanism by which metformin improves glucose clearance and insulin sensitivity. The present data also suggest that increased glucose clearance is not due to its enhanced subsequent oxidation. Additional studies are warranted to determine whether chronic metformin treatment has similar effects on muscle FA metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-6 and TNF-α have been associated with insulin resistance and type 2 diabetes. Furthermore, abnormalities in muscle fatty acid (FA) metabolism are strongly associated with the development of insulin resistance. However, few studies have directly examined the effects of either IL-6 or TNF-α on skeletal muscle FA metabolism. Here, we used a pulse-chase technique to determine the effect of IL-6 (50-5,000 pg/ml) and TNF-α (50-5,000 pg/ml) on FA metabolism in isolated rat soleus muscle. IL-6 (5,000 pg/ml) increased exogenous and endogenous FA oxidation by ≃50% (P < 0.05) but had no effect on FA uptake or incorporation of FA into endogenous lipid pools. In contrast, TNF-α had no effect on FA oxidation but increased FA incorporation into diacylglycerol (DAG) by 45% (P < 0.05). When both IL-6 (5,000 pg/ml) and insulin (10 mU/ml) were present, IL-6 attenuated insulin's suppressive effect on FA oxidation, increasing exogenous FA oxidation (+37%, P < 0.05). Furthermore, in the presence of insulin, IL-6 reduced the esterification of FA to triacylglycerol by 22% (P < 0.05). When added in combination with IL-6 or leptin (10 μg/ml), the TNF-α-induced increase in DAG synthesis was inhibited. In conclusion, the results demonstrate that IL-6 plays an important role in regulating fat metabolism in muscle, increasing rates of FA oxidation, and attenuating insulin's lipogenic effects. In contrast, TNF-α had no effect on FA oxidation but increased FA incorporation into DAG, which may be involved in the development of TNF-α-induced insulin resistance in skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Utilizing MRI, this thesis identified wide-spread brain abnormalities in autism. White matter deficits were more pronounced in the left hemisphere, attributable to atypical myelination. Regarding the mirror neuron system, functional anomalies were situated in the right, dorsal, premotor cortex which further demonstrated reduced functional connectivity with the inferior parietal lobule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent to which brain structural abnormalities might serve as neurobiological endophenotypes that mediate the link between the variation in the promoter of the serotonin transporter gene (5-HTTLPR) and depression is currently unknown. We therefore investigated whether variation in hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex volumes at age 12 years mediated a putative association between 5-HTTLPR genotype and first onset of major depressive disorder (MDD) between age 13–19 years, in a longitudinal study of 174 adolescents (48% males). Increasing copies of S-alleles were found to predict smaller left hippocampal volume, which in turn was associated with increased risk of experiencing a first onset of MDD. Increasing copies of S-alleles also predicted both smaller left and right medial OFC volumes, although neither left nor right medial OFC volumes were prospectively associated with a first episode of MDD during adolescence. The findings therefore suggest that structural abnormalities in the left hippocampus may be present prior to the onset of depression during adolescence and may be partly responsible for an indirect association between 5-HTTLPR genotype and depressive illness. 5-HTTLPR genotype may also impact upon other regions of the brain, such as the OFC, but structural differences in these regions in early adolescence may not necessarily alter the risk for onset of depression during later adolescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cognitive symptoms and impairment are central to schizophrenia and often an early sign of this condition. The present study investigated biological correlates of cognitive symptoms and performance in individuals at ultra-high risk (UHR) for psychosis. The study sample comprised 80 neuroleptic-naïve UHR individuals aged 13-25 years. Associations among erythrocyte membrane fatty acid levels, measured by gas chromatography, and cognitive functioning were investigated in UHR patients. Subjects were divided into terciles based on their scores on the cognitive factor of the Positive and Negative Syndrome Scale. The Zahlen-Verbindungs Test (ZVT) (the number-combination test) was also used as a measure of information-processing speed. Exploratory analysis was conducted to investigate the relationship between membrane fatty acid levels with the size of the intracranial area (ICA), a neurodevelopmental measure relevant to schizophrenia, in half of subjects (n=40) using magnetic resonance imaging. The adjusted analysis revealed that omega-9 eicosenoic and erucic acid levels were significantly higher, but omega-3 docosahexaenoic acid levels were significantly lower, in the cognitively impaired than in the cognitively intact group. We found a significant negative association of eicosenoic, erucic, and gamma-linoleic acids with ZVT scores. A negative association between ICA and membrane levels of eicosenoic acid was also found. This is the first study to demonstrate the relationship between membrane fatty acids and cognitive function in neuroleptic-naïve subjects at UHR for psychosis. The study findings indicate that abnormalities in membrane fatty acids may be associated with the neurodevelopmental disruption associated with the cognitive impairments of individuals at UHR for psychosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence from past research suggests that behaviours and characteristics related to body dissatisfaction may be associated with greater instability of perceptual body image, possibly due to problems in the integration of body-related multisensory information. We investigated whether people with body dysmorphic disorder (BDD), a condition characterised by body image disturbances, demonstrated enhanced susceptibility to the rubber hand illusion (RHI), which arises as a result of multisensory integration processes when a rubber hand and the participant's hidden real hand are stimulated in synchrony. Overall, differences in RHI experience between the BDD group and healthy and schizophrenia control groups (n = 17 in each) were not significant. RHI strength, however, was positively associated with body dissatisfaction and related tendencies. For the healthy control group, proprioceptive drift towards the rubber hand was observed following synchronous but not asynchronous stimulation, a typical pattern when inducing the RHI. Similar drifts in proprioceptive awareness occurred for the BDD group irrespective of whether stimulation was synchronous or not. These results are discussed in terms of possible abnormalities in visual processing and multisensory integration among people with BDD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria play a critical role in regulating cellular functions including bioenergetics, calcium homeostasis, redox signalling, and apoptotic cell death. Mitochondria are also essential to many aspects of neurodevelopment and neuronal functions. However, mitochondrial impairment may affect bioenergetics in the developing brain and alter critical neuronal processes leading to neurodevelopmental abnormalities. Schizophrenia is a chronic and severe neuropsychiatric disorder of neurodevelopmental origin. Immuno-inflammatory pathway is one of the widely appreciated mechanisms that has consistently been implicated in the neurodevelopmental origin of schizophrenia. However, the source of inflammation and the underlying neurobiological mechanisms leading to schizophrenia are yet to be fully ascertained. Recent understanding reveals that perturbation of mitochondrial network dynamics might lead to various nervous system disorders with inflammatory pathologies. Mitochondrial deficit, altered redox balance and chronic low-grade inflammation are evident in schizophrenia. It is hypothesized that oxidative/nitrosative stress responses due to mitochondrial dysfunctions might activate immuno-inflammatory pathways and subsequently lead to neuroprogressive changes in schizophrenia. Herein, we summarise the current understanding of molecular links between mitochondrial dysfunctions and pathogenesis of schizophrenia based on evidence from genomics, proteomics and imaging studies, which together support a role for mitochondrial impairment in the pathogenetic pathways of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the rate of use of computed tomographic (CT) scanning as well as clinical parameters pertaining to that used in psychiatric patients. These patients were compared with a randomly selected control group of psychiatric patients who were not scanned. In addition, scan abnormalities were examined and correlated with clinical and electro-encephalographic (EEG) data. CT scanning was used on 13.5% of admissions. On axis 1 of the DSM III-R, the CT scan group had a significantly higher incidence of delirium and dementia (P < 0.05) and a much higher rate of medical illness (P < 0.01) on axis 3. The rate of CT abnormality was fairly high at 45.2%. An abnormal CT scan was associated with the diagnosis of dementia, the presence of organic mental status abnormality and of abnormality on neurological examination. Focally abnormal CT scans were associated with focally abnormal EEGs in a significant number of patients (P < 0.05).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective The aim of the present study was to examine the timing and outcomes of patients requiring an unplanned transfer from subacute to acute care. Methods Subacute care in-patients requiring unplanned transfer to an acute care facility within four Victorian health services from 1 January to 31 December 2010 were included in the study. Data were collected using retrospective audit. The primary outcome was transfer within 24h of subacute care admission. Results In all, 431 patients (median age 81 years) had unplanned transfers; of these, 37.8% had a limitation of medical treatment (LOMT) order. The median subacute care length of stay was 43h: 29.0% of patients were transferred within 24h and 83.5% were transferred within 72h of subacute care admission. Predictors of transfer within 24h were comorbidity weighting (odds ratio (OR) 1.1, P≤0.02) and LOMT order (OR 2.1, P<0.01). Hospital admission occurred in 87.2% of patients and 15.4% died in hospital. Predictors of in-hospital mortality were comorbidity weighting (OR 1.2, P<0.01) and the number of physiological abnormalities in the 24h preceding transfer (OR 1.3, P<0.01). Conclusions There is a high rate of unplanned transfers to acute care within 24h of admission to subacute care. Unplanned transfers are associated with high hospital admission and in-hospital mortality rates. What is known about the topic? Subacute care is becoming a high acuity environment where many patients are at significant risk of clinical deterioration. Systems for recognising and responding to deteriorating patients are well developed in acute care, but still developing in subacute care. What does this paper add? This is the first Australian multisite study of clinical deterioration in patients situated in subacute care facilities. One-third of unplanned transfers occur within 24h of admission to subacute care. Patients who require unplanned transfer from subacute to acute care have unexpectedly high hospital admission rates and high in-hospital mortality rates. The frequency and completeness of physiological monitoring preceding transfer was low. What are the implications for practitioners? Patients in subacute care require regular physiological assessment and early escalation of care if there are physiological abnormalities. Risk of clinical deterioration should be a factor in the decision to admit patients to subacute care after an acute illness or injury. There is a need to improve systems for recognising and responding to deteriorating patients in subacute care settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormalities within white matter (WM) have been identified in autism spectrum disorder (ASD). Although there is some support for greater neurobiological deficits among females with ASD, there is little research investigating sex differences in WM in ASD. We used diffusion tensor imaging (DTI) to investigate WM aberration in 25 adults with high-functioning ASD and 24 age-, sex- and IQ-matched controls. Tract-based spatial statistics (TBSS) was used to explore differences in WM in major tract bundles. The effects of biological sex were also investigated. TBSS revealed no differences in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), or axial diffusivity (AD) between groups. There were no effects of biological sex. We consider whether methodological differences between past studies have contributed to the highly heterogeneous findings in the literature. Finally, we suggest that, among a high-functioning sample of adults with ASD, differences in WM microstructure may not be related to clinical impairment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current treatment for major depressive disorder (MDD), a prevalent and disabling mental illness, is inadequate, with two-thirds of people treated with first-line antidepressants not achieving remission. MDD is for many a chronic condition, often requiring multiple treatment attempts, thus development of additional interventions is urgently required. An emerging approach to improve non-response to antidepressants is the use of adjunctive nutraceuticals. The pathophysiology of MDD is considered to involve a range of abnormalities (monoamine impairment, neuro-endocrinological changes, reduced brain-derived neurotrophic factor, and cytokine alterations). By targeting an array of these key neurobiological pathways via specific nutraceuticals (S-adenosyl methionine; [SAMe], 5-HTP [active tryptophan], folinic acid [active folic acid], omega-3 fatty acids, and zinc), there is the potential to provide a more comprehensive therapeutic biological approach to treat depression. We are currently conducting a National Health and Medical Research Council funded study in Australia (APP1048222). The clinical trial is phase II/III, multi-site, 3-arm, 8-week, randomised, double-blind, placebo-controlled study using SAMe + folinic acid versus a combination nutraceutical (SAMe, 5-HTP, folinic acid, omega-3, and zinc) or matching placebo in 300 currently depressed participants with diagnosed MDD who are non-responsive to current antidepressants (ANZCTR, protocol number: 12613001300763). The results may provide evidence for a novel adjunctive neurobiological approach for treating depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The efficacy of clozapine for the treatment of schizophrenia has been demonstrated. However, a range of adverse events have been associated with its use. To date, there remains a paucity of data regarding the prevalence of clozapine-induced cardiovascular (CV) and parameters associated with the development of metabolic syndrome, alongside associated risk factors for their development. METHODS: An observational, clinical cohort study design of 355 clozapine patients who were enrolled in the Barwon Health Clozapine Program at Geelong Hospital, Victoria, Australia, between 2008-12. Medical records were accessed retrospectively. Multivariate logistic regression was used to determine associations with adverse event(s). RESULTS: Older age of commencement with clozapine was consistently associated with increased risk of CV abnormalities, with the exception of tachycardia where older age was protective (Odds Ratio [OR]: 0.97; 95% Confidence Intervals [CI]: 0.95, 0.99). Males had significantly greater odds of most metabolic disturbances with the exception of being obese (BMI: ≥30 OR: 0.45; 95% CIs: 0.24, 0.85). Older age of commencement was a significantly associated variable with High- Density Lipoprotein-cholesterol (OR: 1.03; 95% CIs: 1.01, 1.07) and fasting glucose (OR:1.04; 95% CIs: 1.02, 1.07). An increase in BMI was consistently and significantly associated with all metabolic events. CONCLUSION: Male patients who are obese at any point during treatment and older at treatment commencement may be the most vulnerable to adverse CV and metabolic events. While future studies using a matched case-control design may be required to verify these findings, we recommend that treating clinicians consider these risks when assessing patient suitability to clozapine therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormalities in glutamatergic signalling are proposed in schizophrenia in light of the schizophreniform psychosis elicited by NMDA antagonists. The metabotropic glutamate receptor 5 (mGluR5) interacts closely with the NMDA receptor and is implicated in several behavioural endophenotypes of schizophrenia. We have demonstrated that mice lacking mGluR5 have increased sensitivity to the hyperlocomotive effects of the NMDA antagonist MK-801. Mice lacking mGluR5 also show abnormal locomotor patterns, reduced prepulse inhibition (PPI), and deficits on performance of a short-term spatial memory task on the Y-maze. Chronic administration of the antipsychotic drug clozapine ameliorated the locomotor disruption and reversed the PPI deficit, but did not improve Y-maze performance. Chronic clozapine increased NMDA receptor binding ([3H]MK-801) but did not alter dopamine D2 ([3H]YM-09151), 5-HT2A ([3H]ketanserin), or muscarinic M1/M4 receptor ([3H]pirenzepine), binding in these mice. These results demonstrate behavioural abnormalities that are relevant to schizophrenia in the mGluR5 knockout mouse and a reversal of behaviours with clozapine treatment. These results highlight both the interactions between mGluR5 and NMDA receptors in the determination of schizophreniform behaviours and the potential for the effects of clozapine to be mediated by NMDA receptor regulation.
Key words

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormalities in the serotonergic signalling system, including the serotonin 1a receptor, have been implicated in the pathogenesis of schizophrenia and bipolar 1 disorder. However, there is no consensus on whether the density of the serotonin 1a receptor and/or the activity of the G-proteins linking the receptor to the intracellular cascade are altered in these disease states. To address these issues, tissue obtained postmortem from four cortical regions was used to measure [3H] 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) binding and 8-OH-DPAT-stimulated guanosine 5′-[γ-thio]triphosphate (GTPγS) binding to determine if either parameter is altered in schizophrenia or bipolar I disorder. There was an effect of diagnosis on the level of [3H] 8-OH-DPAT binding that may indicate a global change in the density of serotonin 1a receptors, although this effect did not reach significance in any individual brain region. The activation of serotonin 1a receptors did not differ significantly with diagnoses. However, in the outer cortical layers, there appeared to be a dissociation between the number of receptors available and the extent of ligand-induced GTPγS binding, suggesting considerable receptor reserve. In addition, comparing gender independent of diagnoses, a decrease in the levels of serotonin 1a receptors was observed in the cortex of female subjects. These data indicates that there may be subtle changes in serotonin 1a receptors across the cortex in schizophrenia or bipolar I disorder and suggests a gender discordance in receptor levels.