110 resultados para organic ionic plastic crystals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The orb-weaving spider Nephila edulis incorporates into its web a band of decaying animal and plant matter. While earlier studies demonstrate that larger spiders utilise these debris bands as caches of food, the presence of plant matter suggests additional functions. When organic and plastic items were placed in the webs of N. edulis, some of the former but none of the latter were incorporated into the debris band. Using an Y-maze olfactometer, we show that sheep blowflies Lucilia cuprina are attracted to recently collected debris bands, but that this attraction does not persist over time. These data reveal an entirely novel foraging strategy, in which a sit-and-wait predator attracts insect prey by utilising the odours of decaying organic material. The spider's habit of replenishing the debris band may be necessary to maintain its efficacy for attracting prey.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low current density preconditioning process, which produces an improved lithium transport mechanism is created by the action of charge flow through a plastic crystal electrolyte (figure). A reduction in cell polarisation at high applied current density is demonstrated which approaches the rates required for these electrolytes to be used in practical devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic liquids (ILs) form a novel class of electrolytes with unique properties that make them attractive candidates for electrochemical devices. In the present study a range of electrolytes were prepared based on the IL N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl) amide ([C3mpyr][NTf2]) and LiNTf2 salt. The traditional organic solvent diluents vinylene carbonate (VC), ethylene carbonate (EC), tetrahydrofuran (THF) and toluene were used as additives at two concentrations, 10 and 20 mol%, leading to a ratio of about 0.6 and 1.3 diluent molecules to lithium ions, respectively. Most promisingly, the lithium ions see the greatest effect in the presence of all the diluents, except toluene, producing a lithium self-diffusion coefficient of almost a factor of 2.5 times greater for THF at 20 mol%. Raman spectroscopy subtly indicates that THF may be effectively breaking up a small portion of the lithium ion–anion interaction. While comparing the measured molar conductivity to that calculated from the self-diffusion coefficients of the constituents indicates that the diluents cause an increase in the overall ion clustering. This study importantly highlights that selective ion transport enhancement is achievable in these materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A microstructural characterisation of the family of N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts was carried out by observation of powder surface morphologies with the aim of extending the microstructure-property correlation. Inherent difficulties limiting extensive studies of organic solids by SEM, including volatility under vacuum, charging due to electron beam irradiation, and air-sensitivity were overcome with the use of a Field Emission SEM and cryostage attachment. This technique, providing considerable improvements in image quality at low accelerating voltages, enabled direct observation of complex microstructural features in samples exhibiting high temperature plastic crystalline phases (N,N-dimethylpyrrolidinium tetrafluoroborate [P11BF4]; N-methyl-N-ethylpyrrolidinium tetrafluoroborate [P12BF4]; N-methyl-N-propylpyrrolidinium tetrafluoroborate [P13BF4]). Extensive lattice imperfections including grain boundaries, slip planes and dislocation pits were observed within particles of approximately 200 mgrm diameter. The N-methyl-N-butylpyrrolidinium tetrafluoroborate (P14BF4) sample in this series revealed columnar single crystals with high aspect ratios. The origin of plastic flow properties is discussed using single crystal and polycrystalline slip observations and a relationship proposed between defect characteristics and transport properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of N-methyl-N-alkylpyrrolidinium nonafluoro-1-butanesulfonate salts were synthesised and characterised. The thermophysical characteristics of this family of salts have been investigated with respect to potential use as ionic liquids and solid electrolytes. N-Methyl-N-butylpyrrolidinium nonafluoro-1-butanesulfonate (p1,4NfO) has the lowest melting point of the family, at 94 °C. Electrochemical analysis of p1,4 NfO in the liquid state shows an electrochemical window of ~6 V. All compounds exhibit one or more solid–solid transitions at sub-ambient temperatures, indicating the existence of plastic crystal phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The preparation and characterization of a series of novel salts, based on the N-methyl-N-alkylpyrrolidinium or quaternary ammonium organic cations coupled with sulfonate type anions, namely the mesylate (CH3SO3) and tosylate (CH3C6H4SO3) anions are reported. These salts are analogues of the previously described organic cation bis(trifluoromethanesulfonyl)amide (TFSA) salts that form useful ionic liquids of interest in “Green” synthesis. Several of the salts are liquid below 50 °C, e.g. tributylhexylammonium tosylate and ethylmethylpyrrolidinium mesylate and one is liquid at and below room temperature (tributylhexylammonium mesylate). These new salts have a cost advantage over salts of the TFSA, PF6 and CF3SO3 anions. Electrochemical and thermal properties have been investigated. The salts are stable to beyond 100 °C and exhibit electrochemical potential windows of at least ±2 V vs. Ag/Ag+. Some of the salts exhibit multiple crystalline phases below their melting points, potentially indicative of plastic crystal behaviour, whilst others showed more simple solid–liquid behaviour. Many of the salts were found to be glass forming.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New families of salts viz. quaternary ammonium, N-alkyl-N-methylpyrrolidinium or 1-alkyl-3-methylimidazolium dicyanamides, Cat+N(CN)2, are low melting compounds, most being liquid at rt, water-miscible and have low (for ionic liquids) viscosity at rt, e.g.η = 21 cP for 1-ethyl-3-methylimidazolium dicyanamide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemistry of lithium is investigated in a number of electrolytes that consist of a lithium salt dissolved in a combined ionic liquid-organic diluent medium. We find that ethylene carbonate and vinylene carbonate improve electrochemical behaviour, while toluene and tetrahydrofuran are less promising.We also present insights into the electrode passivation caused by these diluents in an ionic liquid electrolyte during lithium cycling. We observe that during lithium cycling those electrolytes with carbonate based diluents are the most able to utilise their previously reported improved lithium ion diffusivities. Conversely, tetrahydrofuran, the most promising diluent of those studied in terms of its known ability to increase lithium ion diffusivity is found not to be as advantageous as a diluent. It appears that the poor electrochemical interfacial properties of the tetrahydrofuran electrolyte prevented the realisation of the benefits of the high solution lithium ion diffusivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of other organic solvents, many of which were not known to afford solvophobic self-assembly prior to this report. The LC behavior of the as-prepared GO sheets in organic solvents has enabled us to disperse and organize substantial amounts of aggregate-free single-walled carbon nanotubes (SWNTs, up to 10 wt %) without compromise in LC properties. The as-prepared LC GO-SWNT dispersions were employed to achieve self-assembled layer-by-layer multifunctional 3D hybrid architectures comprising SWNTs and GO with unrivalled superior mechanical properties (Young’s modulus in excess of 50 GPa and tensile strength of more than 500 MPa).