81 resultados para in-situ test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare tear film osmolarity measurements between in situ and vapor pressure osmometers. Repeatability of in situ measurements and the effect of sample collection techniques on tear film osmolarity were also evaluated.

Methods: Osmolarity was measured in one randomly determined eye of 52 healthy participants using the in situ (TearLab Corporation, San Diego, CA) and the vapor pressure (Vapro 5520; Wescor, Inc., Logan, UT) osmometers. In a subset of 20 participants, tear osmolarity was measured twice on-eye with the in situ osmometer and was additionally determined on a sample of nonstimulated collected tears (3 µL) with both instruments.

Results: Mean (SD) tear film osmolarity with the in situ osmometer was 299.2 (10.3) mOsmol/L compared with 298.4 (10) mmol/kg with the vapor pressure osmometer, which correlated moderately (r = 0.5, P < 0.05). Limits of agreement between the two instruments were -19.7 to +20.5 mOsmol/L. Using collected tears, measurements with the vapor pressure osmometer were marginally higher (mean [SD], 303.0 [11.0] vs 299.3 [8.0] mOsmol/L; P > 0.05) but correlated well with those using the in situ osmometer (r = 0.9, P < 0.05). The mean (SD) osmolarity of on-eye tears was 5.0 (6.6) mOsmol/L higher than that of collected tears, when both measurements were conducted with the in situ osmometer. This was a consistent effect because the measurements correlated well (r = 0.65, P < 0.05).The in situ osmometer showed good repeatability with a coefficient of repeatability of 9.4 mOsmol/L (r = 0.8, P < 0.05).

Conclusions: Correlation between the two instruments was better when compared on collected tear samples. Tear film osmolarity measurement is influenced by the sample collection technique with the osmolarity of on-eye tears being higher than that of collected tears. This highlights the importance of measuring tear film osmolarity directly on-eye. The in situ osmometer has good repeatability for conducting this measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research work we developed a new laboratory based transmission X-ray diffraction technique to perform in-situ deformation studies on a far more regular basis that is not possible at large scale synchrotron and neutron facilities. We studied the deformation mechanisms in light weight magnesium alloys during in-situ tensile testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report, for the first time for Withania somnifera, the use of a modified in vitro system for morphological and phytochemical screening of true to type plants as compared with those grown in a conventional in situ system. Eleven germplasms of cultivated W. somnifera from different regions of India were collected to examine chemotypic variation in withaferin A (WA). Methods were developed to optimize WA extraction. The maximum concentration of WA was extracted from manually ground leaf and root material to which 60 % methanol was added followed by sonication in a water bath sonicator. Variation in WA concentration in whole plants was observed amongst the different germplasms. In the in vitro system, the concentration of WA ranged between 0.27 and 7.64 mg/g dry weight (DW) and in the in situ system, the range in concentration was between 8.06 and 36.31 mg/g DW. The highest amount of WA found in leaves was 7.37 and 41.42 mg/g DW in the in vitro and the in situ systems respectively. In roots, the highest WA concentration was 0.27 mg/g DW in the in vitro and 0.60 mg/g DW in the in situ system. There are distinct advantages in using the in vitro grown plants rather than those grown in the in situ system including the simplicity of design, efficient use of space and nutrition and a system which is soil and contaminant free. The proposed in vitro system is therefore ideal for utilization in molecular, enzymatic and biochemical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobilization of catechol derivatives on GC electrode surfaces can be performed by in situ generation and reduction of nitrocatechol. We present the oxidative nitration of catechol in the presence of nitrous acid followed by electrochemically reduction of the generated nitro aromatic group to the corresponding amine group and its conversion to diazonium cation at the electrode surface to yield a surface covalently modified with catechol. In this manner, some derivatives of catechol can be immobilized on the electrode surface. Whole of the process is carried out in Triethylammonium acetate ionic liquid as an inert and neutral medium (pH∼7.0). Surface coverage can be easily controlled by the applied potential, time and concentration of catechol. After modification, the electrochemical features of modified surface have been studied. Also modified GC electrode exhibited remarkable catalytic activity in the oxidation of NADH. The catalytic currents were proportional to the concentration of NADH over the range 0.01-0.80 mM. This condition can be used for modification of GC surfaces by various aromatic molecules for different application such as design of sensors and biosensors. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex molecules have been successfully grafted onto the surface of unsized carbon fibre, a heterogeneous material which is a challenge to functionalise. The in situ generation of highly reactive phenyldiazo-species from their corresponding anilines was employed to achieve this task. The success of an initial proof-of-concept study (bearing a nitro moiety) supported by X-ray Photoelectron Spectroscopy (XPS) and physical characterisation, led to the design and synthesis of a more complex compound possessing a pendant amine moiety which could theoretically react with an epoxide based resin. After attachment to unsized oxidised fibres, analysis by XPS of the resulting fibres (fluorine used as an XPS tag) indicated a marked difference in functionalisation success which was attributed to steric factors, shown to be critical in influencing the attachment of the phenyldiazo-intermediate to the carbon fibre surface. Analysis of key fibre performance parameters of these fibres showed no change in elastic modulus, strength, surface topography or microscopic roughness when compared to the control unsized oxidised fibres. The functionalised fibres did however show a large increase in coefficient of friction. Single fibre fragmentation tests indicated a marked increase in interfacial shear strength, which was attributed to the pendent amine functionalities interacting with the epoxy resin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) fibers with unexpected elasticity were prepared by a modified core-shell electrospinning method using a commercially-available liquid PDMS precursor (Sylgard 184) and polyvinylpyrrolidone (PVP) as core and sheath materials, respectively. The liquid PDMS precursor was crosslinked in situ to form a solid core when the newly-electrospun core-sheath nanofibers were deposited onto a hot-plate electrode collector. After dissolving the PVP sheath layer off the fibers, net PDMS fibers showed larger average diameter than core-sheath fibers, with an average diameter around 1.35 μm. The tensile properties of both single fibers and fibrous mats were measured. Single PDMS fibers had a tensile strength and elongation at break of 6.0 MPa and 212%, respectively, which were higher than those of PDMS cast film (4.9 MPa, 93%). The PDMS fiber mat had larger elongation at break than the single PDMS fibers, which can be drawn up to 403% their original length. Cyclic loading tests indicated a Mullin effect on the PDMS fiber mats. Such a superior elastic feature was attributed to the PDMS molecular orientation within fibers and the randomly-orientated fibrous structure. Highly-elastic, ultrafine PDMS fibers may find applications in strain sensors, biomedical engineering, wound healing, filtration, catalysis, and functional textiles. © The Royal Society of Chemistry 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple in-situ synthesis route for gold nanoparticles (NPs) was developed to realize multifunctions for silk fabrics. The gold NPs were prepared in a heated solution containing white silk fabric samples. The silk fabrics were colored red and brown by the gold NPs because of their localized surface plasmon resonance (LSPR) property. Gold nanospheres on silk were obtained at a low gold content, and gold nanoplates were synthesized as the gold content increased. The silk fabrics treated with gold NPs showed good light fastness. Moreover, the gold NPs endowed silk fabrics with strong antibacterial activity, excellent UV protection property and enhanced thermal conductivity. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ neutron diffraction of two binary Mg alloys, Mg-0.5 wt.% Y and Mg-2.2 wt.% Y have been carried out in compression. The experimental data has been modelled using the elastoplastic self-consistent methodology in order to determine the critical resolved shear stress for basal slip, second-order 〈c + 〉 pyramidal slip and {101̄2} twinning. It was found that the addition of Y strengthens all three of the deformation modes examined. However, increasing the Y concentration from 0.5% to 2.2% showed no additional hardening in the basal slip and {101̄2} twinning modes, indicating that solute strengthening of these deformation modes is already exhausted by a concentration of 0.5% Y. Second-order pyramidal slip showed additional solute hardening at the higher concentration. © 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum disulfide (MoS2) nanosheets have unique physical and chemical properties, which make it a perfect candidate for next generation electronic and energy storage applications. Herein, we show the successful synthesis of nitrogen-doped MoS2 nanosheets by a simple, effective and large-scale approach. MoS2 nanosheets synthesised by this method show a porous structure formed by curled and overlapped nanosheets with well-defined edges. Analysis of the nanosheets shows that they have an enlarged interlayer distance and high specific surface area. X-ray photoelectron spectroscopy analysis shows the nanosheets have Mo-N bond indicating successful nitrogen doping. The nitrogen content of the product can be modulated by adjusting the ratio of starting materials easily within the range from ca. 5.8 to 7.6 at%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenization, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was used to confirm that, despite the presence of 1.5 mass % Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber latex (NRL) from Hevea brasiliensis was used as a matrix to synthesize gold nanoparticles (AuNPs), leading to an organic-inorganic hybrid latex of NRL-supported AuNPs (AuNPs@NRL). The in situ and environmentally friendly preparation of AuNPs in an NRL matrix was developed by thermal treatment without using any other reducing agents or stabilizers because natural rubber particles and non-rubber components present in serum can serve as supporters for the synthesized AuNPs. As a result, the nanosized and well-dispersed AuNPs not only are decorated on the surface of natural rubber particles, but also can be found in the serum of NRL. The size of the AuNPs presented in NRL matrix can be controlled by adjusting the concentration of NRL. Furthermore, the flexible surface-enhanced Raman scattering (SERS) substrates made from the AuNPs@NRL through vacuum filtration presented good enhancement of the Raman probe molecule of 4-mercaptopyridine and outstanding SERS reproducibility. The capability of synthesizing the bio-supported nanohybrid latex provides a novel green and simple approach for the fabrication of flexible and effective SERS substrates.