174 resultados para glucose homeostasis


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular zinc homeostasis is strictly regulated by zinc binding proteins and zinc transporters. In the present study, we quantified in a first global view the expression of all characterized human zinc exporters (hZnT-1-9) in different leukocyte subsets in response to zinc supplementation and depletion and analyzed their influence on alterations in the intracellular zinc concentration. We found that hZnT-1 is the most regulated zinc exporter. Furthermore, we discovered that hZnT-4 is localized in the plasma membrane similar to hZnT-1. hZnT-4 is most highly expressed in Molt-4, up-regulated after treatment with PHA and is responsible for the measured decrease of intracellular zinc content after high zinc exposure. In addition, we found that hZnT-5, hZnT-6, and hZnT-7 in Raji as well as hZnT-6 and hZnT-7 in THP-1 are up-regulated in response to cellular zinc depletion. Those zinc exporters are all localized in the Golgi network, and this type of regulation explains the observed zinc increase in both cell types after up-regulation of their expression during zinc deficiency and, subsequently, high zinc exposure. Furthermore, we detected, for the first time, the expression of hZnT-8 in peripheral blood lymphocytes, which varied strongly between individuals. While hZnT-2 was not detectable, hZnT-3 and hZnT-9 were expressed at low levels. Further on, the amount of expression was higher in primary cells than in cell lines. These data provide insight into the regulation of intracellular zinc homeostasis in cells of the immune system and may explain the variable effects of zinc deficiency on different leukocyte subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• 1. The present review discusses the potential role of nitric oxide (NO) in the: (i) regulation of skeletal muscle glucose uptake during exercise; and (ii) activation of mitochondrial biogenesis after exercise.
• 2. We have shown in humans that local infusion of an NO synthase inhibitor during exercise attenuates increases in skeletal muscle glucose uptake without affecting blood flow. Recent studies from our laboratory in rodents support these findings in humans, although rodent studies from other laboratories have yielded conflicting results.
• 3. There is clear evidence that NO increases mitochondrial biogenesis in non-contracting cells and that NO influences basal skeletal muscle mitochondrial biogenesis. However, there have been few studies examining the potential role of NO in the activation of mitochondrial biogenesis following an acute bout of exercise or in response to exercise training. Early indications are that NO is not involved in regulating the increase in mitochondrial biogenesis that occurs in response to exercise.
• 4. Exercise is considered the best prevention and treatment option for diabetes, but unfortunately many people with diabetes do not or cannot exercise regularly. Alternative therapies are therefore critical to effectively manage diabetes. If skeletal muscle NO is found to play an important role in regulating glucose uptake and/or mitochondrial biogenesis, pharmaceutical agents designed to mimic these effects of exercise may improve glycaemic control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats.

RESEARCH DESIGN AND METHODS: Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 µmol/l) or saline was infused into the epigastric artery of the contracting leg.

RESULTS: Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by ~35%, without affecting AMP-activated protein kinase (AMPK) activation.

CONCLUSIONS: NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72 ± 1% VO2 peak followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-2H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCl (L-Arg, 30 g at 0.5 g/min) was coinfused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1 ± 1.8 ml·min–1·kg–1; CON: 11.9 ± 0.7 ml·min–1·kg–1 at 120 min, P < 0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to males, females oxidize proportionately more fat and less carbohydrate during endurance exercise performed in the fasted state. This study was designed to test the hypothesis that there may also be gender differences in exogenous carbohydrate (CHOexo) oxidation during exercise. Healthy, young males (n = 7) and females (n = 7) each completed 2 exercise trials (90 min cycle ergometry at 60% VO[sub2peak]), 1 week apart. Females were eumenorrheic and were tested in the midfollicular phase of their menstrual cycle. Subjects drank intermittently either 8% CHOexo (1 g glucose ⋅ kg ⋅ h[sup-1]) enriched with U-13C glucose or an artificially sweetened placebo during the trial. Whole-body substrate oxidation was determined from PER, urinary urea excretion, and the ratio of 13C:12C in expired gas during the final 60 min of exercise. During the placebo trial, fat oxidation was higher in females than in males (0.42 ± 0.07 vs. 0.32 ± 0.09 g ⋅ min[sup-1] . kg LBM[sup-1] x 10[sup-2]) at 30 min of exercise (p < .05). When averaged over the final 60 min of exercise, the relative proportions of fat, total carbohydrate, and protein were similar between groups. During CHOexo ingestion, both the ratio of 13C: 12C in expired gas (p < .05) and the proportion of energy derived from CHOexo relative to LBM (p < .05) were higher in females compared to males at 75- and 90-min exercise. When averaged over the final 60 min of exercise, the percentage of CHOexo to the total energy contribution tended to be higher in females (14.3 + 1.2%) than in males (11.2 ± 1.2%; p = .09). The reduction in endogenous CHO oxidation with CHOexo intake was also greater in females (12.9 ± 3.1%) than in males (5.1 ± 2.0%; p = .05). Compared to males, females may oxidize a greater relative proportion of CHOexo during endurance exercise which, in turn, may spare more endogenous fuel. Based on these observations, ingested carbohydrate may be a particularly beneficial source of fuel during endurance exercise for females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new generation of blood glucose meters is now available for use by people with diabetes and health professionals, but little independent evaluation data is available. Previous models are prone to a variety of errors. We compared the accuracy, precision and features of the six latest meters available in Australia as of 1996. Meters studied were the Mini-Accutrend and Advantage (Boehringer Mannheim), Precision QID and Companion 2 (MediSense), Glucometer Elite (Bayer) and Lynx (National Diagnostic Products). We measured the blood glucose levels of 50 people with diabetes with these meters, and compared them to a reference method (YSI glucose analyser). Error grid analysis confirmed that accuracy of all meters was sufficient for their intended use as patient monitors. Precision was assessed using 25 samples from control solutions provided for each meter, and the coefficient of variation calculated. Improvements in strip and meter technology in some models have increased ease of use and reduced the likelihood of user error. This study, when considered with individual preferences for various features and price should assist patients in choosing a new blood glucose meter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background--Diabetes mellitus increases the risk of cardiovascular disease (CVD) and all-cause mortality. The relationship between milder elevations of blood glucose and mortality is less clear. This study investigated whether impaired fasting glucose and impaired glucose tolerance, as well as diabetes mellitus, increase the risk of all-cause and CVD mortality.

Methods and Results
--In 1999 to 2000, glucose tolerance status was determined in 10 428 participants of the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). After a median follow-up of 5.2 years, 298 deaths occurred (88 CVD deaths). Compared with those with normal glucose tolerance, the adjusted all-cause mortality hazard ratios (HRs) and 95% confidence intervals (CIs) for known diabetes mellitus and newly diagnosed diabetes mellitus were 2.3 (1.6 to 3.2) and 1.3 (0.9 to 2.0), respectively. The risk of death was also increased in those with impaired fasting glucose (HR 1.6, 95% CI 1.0 to 2.4) and impaired glucose tolerance (HR 1.5, 95% CI 1.1 to 2.0). Sixty-five percent of all those who died of CVD had known diabetes mellitus, newly diagnosed diabetes mellitus, impaired fasting glucose, or impaired glucose tolerance at baseline. Known diabetes mellitus (HR 2.6, 95% CI 1.4 to 4.7) and impaired fasting glucose (HR 2.5, 95% CI 1.2 to 5.1) were independent predictors for CVD mortality after adjustment for age, sex, and other traditional CVD risk factors, but impaired glucose tolerance was not (HR 1.2, 95% CI 0.7 to 2.2).

Conclusions--This study emphasizes the strong association between abnormal glucose metabolism and mortality, and it suggests that this condition contributes to a large number of CVD deaths in the general population. CVD prevention may be warranted in people with all categories of abnormal glucose metabolism.