70 resultados para daubechies wavelet


Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Understanding neural functions requires the observation of the activities of single neurons that are represented via electrophysiological data. Processing and understanding these data are challenging problems in biomedical engineering. A microelectrode commonly records the activity of multiple neurons. Spike sorting is a process of classifying every single action potential (spike) to a particular neuron. This paper proposes a combination between diffusion maps (DM) and mean shift clustering method for spike sorting. DM is utilized to extract spike features, which are highly capable of discriminating different spike shapes. Mean shift clustering provides an automatic unsupervised clustering, which takes extracted features from DM as inputs. Experimental results show a noticeable dominance of the features extracted by DM compared to those selected by wavelet transformation (WT). Accordingly, the proposed integrated method is significantly superior to the popular existing combination of WT and superparamagnetic clustering regarding spike sorting accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spike sorting plays an important role in analysing electrophysiological data and understanding neural functions. Developing spike sorting methods that are highly accurate and computationally inexpensive is always a challenge in the biomedical engineering practice. This paper proposes an automatic unsupervised spike sorting method using the landmark-based spectral clustering (LSC) method in connection with features extracted by the locality preserving projection (LPP) technique. Gap statistics is employed to evaluate the number of clusters before the LSC can be performed. Experimental results show that LPP spike features are more discriminative than those of the popular wavelet transformation (WT). Accordingly, the proposed method LPP-LSC demonstrates a significant dominance compared to the existing method that is the combination between WT feature extraction and the superparamagnetic clustering. LPP and LSC are both linear algorithms that help reduce computational burden and thus their combination can be applied into realtime spike analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear, noisy and outlier characteristics of electroencephalography (EEG) signals inspire the employment of fuzzy logic due to its power to handle uncertainty. This paper introduces an approach to classify motor imagery EEG signals using an interval type-2 fuzzy logic system (IT2FLS) in a combination with wavelet transformation. Wavelet coefficients are ranked based on the statistics of the receiver operating characteristic curve criterion. The most informative coefficients serve as inputs to the IT2FLS for the classification task. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II, are employed for the experiments. Classification performance is evaluated using accuracy, sensitivity, specificity and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, AdaBoost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The wavelet-IT2FLS method considerably dominates the comparable classifiers on both datasets, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II by 1.40% and 2.27% respectively. The proposed approach yields great accuracy and requires low computational cost, which can be applied to a real-time BCI system for motor imagery data analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces an approach to classify EEG signals using wavelet transform and a fuzzy standard additive model (FSAM) with tabu search learning mechanism. Wavelet coefficients are ranked based on statistics of the Wilcoxon test. The most informative coefficients are assembled to form a feature set that serves as inputs to the tabu-FSAM. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II are employed for the experiments. Classification performance is evaluated using accuracy, mutual information, Gini coefficient and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The proposed tabu-FSAM method considerably dominates the competitive classifiers, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lemming population cycles in the Arctic have an important impact on the Arctic food web, indirectly also affecting breeding success in Arctic-nesting birds through shared predators. Over the last two decades lemming cycles have changed in amplitude and even disappeared in parts of the Arctic. To examine the large scale effect of these recent changes we re-analysed published data from the East Atlantic Flyway (EAF), where a relationship between lemming cycles and wader breeding success was earlier found, and new data on breeding success of waders in the East Asian-Australasian Flyway (EAAF). We found that 1) any long-term periodicities in wader breeding success existed only until the year 2000 in the EAAF and until the 1980s in the EAF; 2) studying these patterns at a smaller spatial scale, where the Siberian-Alaskan breeding grounds were divided into five geographical units largely based on landscape features, breeding success of waders from the EAAF was not correlated to an index of predation pressure, but positively correlated to Arctic summer temperatures in some species. We argue that fading out of lemming cycles in some parts of the Arctic is responsible for faltering periodicity in wader breeding success along both flyways. These changed conditions have not yet resulted in any marked changing trends in breeding success across years, and declining numbers of waders along the EAAF are therefore more likely a result of changing conditions at stop-over and wintering sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA) to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that serve as inputs to classification algorithms. Experimental results show the robustness and significant dominance of the wavelet-GA against competitive methods. The proposed method therefore can be applied to cancer classification models that are useful as real clinical decision support systems for medical practitioners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we have investigated the evidence of fetal heart rate asymmetry and how the fetal heart rate asymmetry changes before and after 35 weeks of gestation. Noninvasive fetal electrocardiogram (fECG) signals from 45 pregnant women at the gestational age from16 to 41 weeks with normal single pregnancies were analysed. A nonlinear parameter called heart rate asymmetry (HRA) index that measures time asymmetry of RR interval time-series signal was used to understand the changes of HRA in early and late fetus groups. Results indicate that fetal HRA measured by Porta's Index (PI) consistently increases after 35 weeks gestation compared to foetus before 32 weeks of gestation. It might be due to significant changes of sympatho-vagal balance towards delivery with more sympathetic surge. On the other hand, Guzik's Index (GI) showed a mixed effect i.e., increases at lower lags and decreases at higher lags. Finally, fHRA could potentially help identify normal and the pathological autonomic nervous system development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach to EEG signal classification for brain-computer interface (BCI) application using fuzzy standard additive model is introduced in this paper. The Wilcoxon test is employed to rank wavelet coefficients. Top ranking wavelets are used to form a feature set that serves as inputs to the fuzzy classifiers. Experiments are carried out using two benchmark datasets, Ia and Ib, downloaded from the BCI competition II. Prevalent classifiers including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system are also implemented for comparisons. Experimental results show the dominance of the proposed method against competing approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interval type-2 fuzzy logic system is introduced for cancer diagnosis using mass spectrometry-based proteomic data. The fuzzy system is incorporated with a feature extraction procedure that combines wavelet transform and Wilcoxon ranking test. The proposed feature extraction generates feature sets that serve as inputs to the type-2 fuzzy classifier. Uncertainty, noise and outliers that are common in the proteomic data motivate the use of type-2 fuzzy system. Tabu search is applied for structure learning of the fuzzy classifier. Experiments are performed using two benchmark proteomic datasets for the prediction of ovarian and pancreatic cancer. The dominance of the suggested feature extraction as well as type-2 fuzzy classifier against their competing methods is showcased through experimental results. The proposed approach therefore is helpful to clinicians and practitioners as it can be implemented as a medical decision support system in practice.