182 resultados para Zirconium alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium (Ti) and Ti alloys are important scaffold materials for bone tissue engineering. In the present study, a new type of porous Ti alloy scaffold with biocompatible alloying elements, that is, niobium (Nb) and zirconium (Zr), was prepared by a space-holder sintering method. This porous TiNbZr scaffold with a porosity of 69% exhibits a mechanical strength of 67MPa and an elastic modulus of 3.9GPa, resembling the mechanical properties of cortical bone. To improve the osteoconductivity, a calcium phosphate (Ca/P) coating was applied to the surface of the scaffold using a biomimetic method. The biocompatibility of the porous TiNbZr alloy scaffold before and after the biomimetic modification was assessed using the SaOS2 osteoblast–like cells. Cell culture results indicated that the porous TiNbZr scaffold is more favorable for cell adhesion and proliferation than its solid counterpart. By applying a Ca/P coating, the cell proliferation rate on the Ca/P-coated scaffold was significantly improved. The results suggest that high-strength porous TiNbZr scaffolds with an appropriate osteoconductive coating could be potentially used for bone tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS2 cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 μg/L for molybdenum, titanium, niobium, and silicon, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous Ti-50.5Ni shape memory alloys with different porosities were produced using a space-holder sintering method. A new Ni-free Ti-based shape memory alloy, Ti-18Nb-5Mo-5Sn, was developed for potential biomedical applications, and a novel one-step hydrothermal process was applied to produce hydroxyapatite coatings on the surface of Ti alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared two potential model alloys, 304 stainless steel and Ni-30wt.%Fe, to study the behaviour of austenite during the thermo-mechanical processing of steel. The deformation behaviour as well as the textural and microstructural evolution was characterised in detail over a wide range of deformation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical approach to the formation of a protective surface film on Mg alloys immersed in the ionic liquid (IL), trihexyl(tetradecyl)phosphonium–bis 2,4,4-trimethylpentylphosphinate, was investigated in this work. Initially, cyclic voltammetry was used with the Mg alloy being cycled from OCP to more anodic potentials. EIS data indicate that, under these circumstances, an optimum level of protection was achieved at intermediate potentials (e.g., 0 or 0.25 V versus Ag/AgCl). In the second part of this paper, a small constant bias was applied to the Mg alloy immersed in the IL for extended periods using a novel cell design. This electrochemical cell allowed us to monitor in situ surface film formation on the metal surface as well as the subsequent corrosion behaviour of the metal in a corrosive medium. This apparatus was used to investigate the evolution of the surface film on an AZ31 magnesium alloy under a potential bias (between ±100 mV versus open circuit) applied for over 24 h, and the film evolution was monitored using electrochemical impedance spectroscopy (EIS). A film resistance was determined from the EIS data and it was shown that this increased substantially during the first few hours (independent of the bias potential used) with a subsequent decrease upon longer exposure of the surface to the IL. Preliminary characterization of the film formed on the Mg alloy surface using ToF-SIMS indicates that a multilayer surface exists with a phosphorous rich outer layer and a native oxide/hydroxide film underlying this. The corrosion performance of a treated AZ31 specimen when exposed to 0.1 M NaCl aqueous solution showed considerable improvement, consistent with electrochemical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work examines the extrusion and mechanical properties of MExlOO alloys, which contain levels of rare earth alloying additions up to 0.4 wt%. It is shown that these alloys can display the high extrudability of alloy Ml with strengths nearing those of AZ31. Most importantly, the grades display high room temperature ductility; values of total tensile elongation as high as 30% have been observed. These benefits derive from a combination of grain refinement and texture weakening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data collection addresses the problem of low ductility in magnesium alloys, preventing their wider use. It examines a series of dilute alloys in order to determine the effect of composition on the extrusion behaviour and texture, and on the room temperature tensile ductility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data examines the design of magnesium alloys for improved ductility by the edition of rare earth elements. These elements, such as cerium and gadolinium modify the texture of wrought products and also refine the grain size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scroll shoulder tools are widely used and they do not need to be tilted during friction stir welding (FSW). However, the detailed material flow, which is important for proper scroll shoulder tool design and subsequently for forming the defect-free shoulder flow zone, has not been fully explained. In the present study, features of material flow in shoulder flow zone, during FSW of thick 6061 aluminium (Al) plates using a scroll shoulder tool were investigated. It was observed that there is a simple layer-to-layer banded structure which appears in the bottom portion of shoulder flow zone, but disappears in the top portion of this weld zone. When the scroll shoulder tool is plunged into the workpiece to a determined depth, the workpiece material is extruded by the tool pin, and pushed up into the scroll groove beneath the shoulder forming the pick-up material. During the forward movement of the tool, the central portion of pick-up material was driven downward by the root portion of pin and then it detaches from the tip portion of pin in a layer-to-layer manner to form the weld.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose oxidase (GOx) is an important enzyme with great potential application for enzymatic sensing of glucose, in implantable biofuel cells for powering of medical devices in vivo and for large-scale biofuel cells for distributed energy generation. For these applications, immobilisation of GOx and direct transfer of electrons from the enzyme to an electrode material is required. This paper describes synthesis of conducting polymer (CP) structures in which GOx has been entrained such that direct electron transfer is possible between GOx and the CP. CP/enzyme composites prepared by other means show no evidence of such “wiring”. These materials therefore show promise for mediator-less electronic connection of GOx into easily produced electrodes for biosensing or biofuel cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar and dissimilar butt joint welds comprising combinations of commercially pure grade 4 titanium (CP-Ti), Ti-6Al-4V (Ti-64) and Ti-5Al-5V-5Mo-3Cr (Ti-5553) were created using the electron beam process. The resultant welds were studied by means of metallography, optical microscopy, mechanical testing and scanning electron microscopy. Mechanical testing was performed on welded samples to study the joint integrity and fracture characteristics. A scanning electron microscope investigation was performed on the fracture surface to reveal their fracture modes. While all weldments were crack free and most weldments exhibited mechanical properties comparable to the base metal, negligible ductility was exhibited during tensile testing joints of Ti- 5553 welded to either Ti-64 or Ti-5553.