99 resultados para Vehicle Parts.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To investigate the risk of falls and motor vehicle collisions (MVCs) in patients with glaucoma.

METHODS. The sample comprised 48 patients with glaucoma (mean visual field mean deviation [MD] in the better eye = −3.9 dB; 5.1 dB SD) and 47 age-matched normal control subjects, who were recruited from a university-based hospital eye care clinic and are enrolled in an ongoing prospective study of risk factors for falls, risk factors for MVCs, and on-road driving performance in glaucoma. Main outcome measures at baseline were previous self-reported falls and MVCs, and police-reported MVCs. Demographic and medical data were obtained. In addition, functional independence in daily living, physical activity level and balance were assessed. Clinical vision measures included visual acuity, contrast sensitivity, standard automated perimetry, useful field of view (UFOV), and stereopsis. Analyses of falls and MVCs were adjusted to account for the possible confounding effects of demographic characteristics, medications, and visual field impairment. MVC analyses were also adjusted for kilometers driven per week.

RESULTS. There were no significant differences between patients with glaucoma and control subjects with respect to number of systemic medical conditions, body mass index, functional independence, and physical activity level (P > 0.10). At baseline, 40 (83%) patients with glaucoma and 44 (94%) control subjects were driving. Compared with control subjects, patients with glaucoma were over three times more likely to have fallen in the previous year (odds ratio [OR]adjusted = 3.71; 95% CI, 1.14–12.05), over six times more likely to have been involved in one or more MVCs in the previous 5 years (ORadjusted = 6.62; 95% CI, 1.40–31.23), and more likely to have been at fault (ORadjusted = 12.44; 95% CI, 1.08–143.99). The strongest risk factor for MVCs in patients with glaucoma was impaired UFOV selective attention (ORadjusted = 10.29; 95% CI, 1.10–96.62; for selective attention >350 ms compared with ≤350 ms).

CONCLUSIONS. There is an increased risk of falls and MVCs in patients with glaucoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The desire to reduce carbon emissions due to transportation sources has led over the past decade to the development of new propulsion technologies, focused on vehicle electrification (including hybrid, plug-in hybrid and battery electric vehicles). These propulsion technologies, along with advances in telecommunication and computing power, have the potential of making passenger and commercial vehicles more energy efficient and environment friendly. In particular, energy management algorithms are an integral part of plug-in vehicles and are very important for achieving the performance benefits. The optimal performance of energy management algorithms depends strongly on the ability to forecast energy demand from the vehicle. Information available about environment (temperature, humidity, wind, road grade, etc.) and traffic (traffic density, traffic lights, etc.), is very important in operating a vehicle at optimal efficiency. This article outlines some current technologies that can help achieving this optimum efficiency goal. In addition to information available from telematic and geographical information systems, knowledge of projected vehicle charging demand on the power grid is necessary to build an intelligent energy management controller for future plug-in hybrid and electric vehicles. The impact of charging millions of vehicles from the power grid could be significant, in the form of increased loading of power plants, transmission and distribution lines, emissions and economics (information are given and discussed for the US case). Therefore, this effect should be considered in an intelligent way by controlling/scheduling the charging through a communication based distributed control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motorbike riders are 34-times more likely to die in a crash compared to car drivers per km travelled (1). Such safety risks together with special skill requirements for the driver and much lower comfort compared to normal cars are the main reasons why motorbikes represent only a fraction of all vehicle sales in developed countries. Deakin University is developing a revolutionary cross-over fun vehicle with ultra low fuel consumption and emissions. This new vehicle generation combines the best of two worlds: the fun to drive, low cost, and small size of a scooter together with the safety, comfort and easiness to operate of a car. The result is a vehicle that is more fuel efficient than most cars or even scooters.

Various tilting cross over vehicles have been presented over the last decade that were trying to automate the tilting control of narrow vehicles to make them safer. Examples of these concepts are the Carver, Clever and in some way also the MP3 scooter from Piaggio. The problem with fully enclosed concepts like the Carver or Clever is that they require very complex and therefore also expensive tilting control systems so that the vehicles are not price competitive compared to low cost micro cars or even normal small cars. The MP3 on the other hand comes with a tilting control system which is only semi automatic so that typical car advantages - comprehensive safety features like crush zones, roll over protection, air bags, safety belts or comfort features like full weather protection including heating and cooling – can not be provided.

Deakin’s approach is quite different to the above mentioned concepts. The requirements were derived based on two different investigations: The first step was a critical evaluation of social trends and the second step was an in-depth benchmarking study of existing concepts which identified the typical strengths and weaknesses of these concepts. In a critical next step a new concept was created that addresses most of the weaknesses of existing tilting three-wheelers in a holistic approach by setting clear priority rankings for the vehicle targets, based on current trends. The priorities were set in the following order: Safety, Affordability, Fun and Efficiency (SAFE).

The key feature that enables an enclosed tilting vehicle is a fully automatic tilting control system. With an automatic tilting control system the driver does not need to put the feet on the ground to balance the vehicle when he stops, so the vehicle can be built with a full enclosure. This allows the implementation of typical car like safety features (seat belts, roll over structure, crush zones, air bags). The SafeRide™ tilting control system is a passive system that involves the driver’s balancing sense in its feedback control system. The vehicle has typical scooter like steering characteristics, where the steering is initiated through countersteering. Another safety critical design feature is the crush zone between the two front wheels which is not possible with only one front wheel or with the powertrain positioned between the front wheels, as the powertrain can’t absorb a lot of energy due to its structural stiffness and density. The passive tilting control system is quite simple and therefore makes the vehicle very affordable, an important factor for successful commercialisation.

Another advantage of integrating the human balancing senses in the feedback control of the tilting system is that the system kicks in slightly after the human balancing reacts. In some instances that can generate the typical adrenalin thrill known from riding a bike. This fun factor is quite common with many trend sports like mountain biking, surfing, roller-skating, snowboarding, or skateboarding. Some of these sports have seen very rapid growth only a short time after they have been invented. Utilising the human balancing system during driving also makes the vehicle safer as the adrenalin is produced after reaching a semi-stable driving condition that is controlled by the vehicles tilting control system, but before the vehicle reaches an unstable driving condition that can not be controlled by the vehicle but only (eventually) by the driver – if he has got the required driving skill and if he is alert enough.

Efficiency superior to most cars and scooters is achieved by the aerodynamics of a fully enclosed body structure in combination with the small frontal area of a typical scooter and the droplet shape enabled by the relatively wide front with 2 wheels and the very narrow tail with only one rear wheel. The passive tilting system also contributes to the extreme efficiency as the system only draws some small electrical power for the electronic control unit. Another feature is a low cost exhaust energy recovery system which is discussed in another paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling and simulation is commonly used to improve vehicle performance, to optimize vehicle system design, and to reduce vehicle development time. Vehicle performances can be affected by environmental conditions and driver behavior factors, which are often uncertain and immeasurable. To incorporate the role of environmental conditions in the modeling and simulation of vehicle systems, both real and artificial data are used. Often, real data are unavailable or inadequate for extensive investigations. Hence, it is important to be able to construct artificial environmental data whose characteristics resemble those of the real data for modeling and simulation purposes. However, to produce credible vehicle simulation results, the simulated environment must be realistic and validated using accepted practices. This paper proposes a stochastic model that is capable of creating artificial environmental factors such as road geometry and wind conditions. In addition, road geometric design principles are employed to modify the created road data, making it consistent with the real-road geometry. Two sets of real-road geometry and wind condition data are employed to propose probability models. To justify the distribution goodness of fit, Pearson's chi-square and correlation statistics have been used. Finally, the stochastic models of road geometry and wind conditions (SMRWs) are developed to produce realistic road and wind data. SMRW can be used to predict vehicle performance, energy management, and control strategies over multiple driving cycles and to assist in developing fuel-efficient vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrochemical spray formulations applied to plants are often mixed with surfactants that facilitate delivery of the active ingredient. However, surfactants cause phytotoxicity and off-target effects in the environment. We propose the use of nanostructured liquid crystalline particles (NLCP) as an alternative to surfactant-based agrochemical delivery. For this, we have compared the application of commercial surfactants, di (2-ethylhexyl) sulfosuccinate and alkyl dimethyl betaine, with NLCP made from phytantriol, at concentrations of 0.1%, 1% and 5% on the adaxial surface of leaves of four plant species Ttriticum aestivum (wheat), Zea mays (maize), Lupinus angustifolius (lupin), and Arabidopsis thaliana. In comparison with the application of surfactants there was less phytotoxicity on leaves of each species following treatment with NLCP. Following treatment of leaves with NLCP analysis of cuticular wax micromorphology revealed less wax solubilization in the monocot species. The results clearly show that there are advantages in the use of NLCP rather than surfactants for agrochemical delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Occupational light vehicles (OLV) are light passenger and loadshaped vehicles used for work. The OLV-associated injury burden is as great as that of heavy vehicle users, but has been largely ignored by occupational health and safety (OHS) regulators. Contingent employment growth has accentuated existing gaps in the policy framework between OHS and road-safety. Frequent burden shifting from OHS to road-related health systems undermines the evidence base necessary to inform policy development. Aims: To provide evidence-based recommendations for the collection of OLVuser surveillance data and to underpin OHS procedures and policies for OLVusers. Method: The literature was systematically analyzed to identify OLV-user OHS policy and practice gaps. Strategies to improve and co-ordinate surveillance systems were developed to address the identified limitations. Results: Gaps were identified in OLV-user legislation, data collection, and riskmanagement. These require strategies to improve identification of all OLV-users and to co-ordinate surveillance and OHS practice. Discussion: Contemporary reform of road and OHS, policy, provides a timely opportunity for the implementation of strategic responses to this serious road safety and occupational, public health problem.