110 resultados para Twinning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wrought magnesium alloys exhibit poor cold formability and the accepted explanation is the shortage of independent slip systems. In order to improve the formability in these alloys, an understanding of the deformation modes is required. In the present work, activation of different slip and twinning systems are investigated in rolled Mg–3Al–1Zn using electron back scattering diffraction. Analysis was performed on deformed surfaces and on metallographically prepared cross-sections following deformation at room temperature. The results reinforce the importance of prismatic slip and c-axis compression double twinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semianalytical Sachs-type equation for the flow stress of magnesium-base alloys is developed using the Schmid law, power law hardening, and a sigmoidal increase in the twinning volume fraction with strain. Average Schmid factors were estimated from electron backscattered diffraction (EBSD) data. With these, the equation provides a reasonable description of the flow curves obtained in compression and tension for samples of Mg-3Al-1Zn cut in different orientations from rolled plate. The model illustrates the general importance of basal slip and twinning in magnesium alloys. The significance of prismatic slip in room temperature tension testing is also highlighted. This is supported with EBSD slip line trace analysis and rationalized in terms of a possible sensitivity of the critical resolved shear stress for prismatic (cross) slip to the stress on the basal plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of aging pre-treatment on the compressive deformation of a commercial WE54 alloy is studied. Age hardening treatments were performed at 170 °C, 250 °C and 300 °C. Compression testing was then carried out for the peak aged samples at temperatures between ambient and 450 °C. Twinning dominated the deformation at lower temperatures for all initial microstructures. This behaviour was replaced by slip dominated flow when the temperature was raised. The temperature of the transition from twinning to slip dominated flow was only mildly sensitive to the pre-treatment. It is also evident that dynamic recrystallization is retarded in this alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper examines the development of grain size during the recrystallization of magnesium alloys and the influence the grain size has on the mechanical response. In magnesium alloys grain refinement improves the strength-ductility balance. This simultaneous increase in both strength and ductility is ascribed to the impact the grain size has on deformation twinning. The mechanisms by which the grain size is established during hot working are shown to be conventional dynamic recrystallization followed by post-dynamic recrystallization. The role of alloying additionon both of these reactions is briefly considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of slip and twinning deformation modes in Mg-3Al-1Zn alloy was investigated by means of both in-situ and ex-situ methods at ambient temperature using electron back scattering diffraction (EBSD). The results confirm the importance of non-basal slip and c-axis compression double twinning. During tensile deformation of rolled sheet, 63% of the observed slip traces were ascribed to prismatic slip, 33% to basal slip and 4% to <c+a> slip. Prismatic slip was frequently observed in grain interiors. The density of twinning was quantified in samples tested along transverse, extrusion and rolling directions at failure. The values in the range of 0.02-0.18 twins per square micron were found depending on sample orientation. The results show the effect of twinning on failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure and mechanical response of three extruded magnesium alloys, Mg-3Al-1Zn (AZ31), Mg-1.5Mn (Ml) and Mg-lMn-0.4RE (ME10) are examined. The tensile yield strength of ME10 was nearly half that of AZ31 and Ml. The tensile elongations were 6%, 11% and 19% for Ml, AZ31 and ME10, respectively. This range of properties is large and is attributed to the unique extrusion texture produced in ME10, and the high density of fine particles in Ml.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extrusion behaviour, texture and tensile ductility of five binary Mg-based alloys have been examined and compared to pure Mg. The five alloying additions examined were Al, Sn, Ca, La and Gd. When these alloys are compared at equivalent grain size, the La- and Gd-containing alloys show the best ductilities. This has been attributed to a weaker extrusion texture. These two alloying additions, La and Gd, were found to also produce a new texture peak with View the MathML source parallel to the extrusion direction. This “rare earth texture” component was found to be suppressed at high extrusion temperatures. It is proposed that the View the MathML source texture component arises from oriented nucleation at shear bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tensile testing of rolled AZ31 alloy with a mean grain size of 80 μm reveals localization and failure prior to diffuse necking. Optical microscopy reveals that failure is caused by voids that have formed within twins. A simple localization criterion is proposed that captures the role of grain size in the effect. Such early failure is only predicted for coarse grain sizes, in line with observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characteristics of the “contraction” twins, formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension approximately perpendicular to the grain c-axes, are investigated using transmission electron microscopy. The grain c-axis contractions were largely accommodated by {1011}-{1012} source double-twins in a variant characterized by 38° ⟨1210⟩ source twin/matrix misorientation in conjunction with dislocation slip. A possible interpretation of the observed preference for this variant formation is given and some crystal plasticity modelling is performed to elucidate the matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ neutron diffraction and Elasto-Plastic Self-Consistent (EPSC) polycrystal modelling have been employed to investigate which deformation mechanisms are involved in the plasticity of extruded AZ31 Mg alloy during the tensile loading along the extrusion direction. On the basis of this study we were able to determine the relative activity of the slip and twinning deformation modes. By tuning the parameters of the EPSC model (i.e. the critical resolved shear strengths and hardening parameters), excellent agreement with the experimental data has been achieved. It is shown that the strain in the crystallographic ⟨c ⟩direction is accommodated mainly by ⟨c + a ⟩ dislocation slip on second-order pyramidal planes. The results further indicate that either slip of ⟨a ⟩dislocations occurs on {10.1} pyramidal planes or cross-slip from basal and prismatic planes takes place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One ZM61 alloy (6·2%Zn, 1·2%Mn) and two magnesium alloys containing nominally 3% of neodymium and yttrium respectively have been prepared in the form of hot extruded flat strips. Their textures and microstructures have been quantified and series of mechanical tests were carried out to determine plane stress yield loci in both the solution treated and aged conditions. The ZM61 alloy had a sharp texture and marked anisotropy of strength that could be rationalised in terms of deformation by basal <a> slip and {1012}<1011> twinning. This material was much weaker in compression than in tension. Precipitation hardening on aging caused a greater impedance to twinning than to slip with the result that the anisotropy was somewhat reduced. The Mg–3Nd alloy had a very weak and different texture but nevertheless demonstrated a pronounced anisotropy of strength. Aging increased the yield stress by about 80% and also inhibited twinning to some extent although the degree of anisotropy remained almost unaffected. The Mg–3Y alloy which showed a texture of intermediate strength was different in type from either of the others. Its strength behaviour was close to isotropic; in particular, no difference existed between tensile and compressive loading, and aging produced only a marginal increase in strength. Twins were relatively infrequent in the deformed Mg–3Y alloy but its mechanical behaviour could not be rationalised according to simple models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work combines electron backscatter diffraction, transmission electron microscopy and Schmid analysis to investigate secondary twinning in the magnesium alloy Mg-3AI-1Zn. Inspection of the misorientations between the parent matrix and {1011} - {1012} doubly twinned volumes reveals that there are four possible variants. One of these variants characterized by 38°< 1210 > misorientation with the matrix is favoured much more than the others. This variant involves activation of the secondary twinning systems that are quite inconsistent with the Schmid-type behaviour. For the secondary twin to grow significantly it must take on a shape enforced by the primary twin, however, this is not optimal for strain compatibility. It is argued that the 38° < 1210 > variant occurs most frequently because it provides the closest match between the primary and secondaty twinning planes, thus minimizing the compatibility strain. This conjecture is confirmed by the simulations of twin activity m ellipsoidal grains performed using the visco-plastic self-consistent crystal plasticity model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is concerned with gaining a better understanding of the factors that control the ductility of wrought magnesium alloys. The ultimate aim is to develop alloys with vastly improved room temperature formability. It is shown that 3D tomography of fractured tensile specimens reveals disk shaped voids aligned more or less at 45 deg. to the tensile axis. These voids are consistent with twin induced void formation. It is also shown that the double twins that produce such voids form in contradiction to Schmid predictions. Finally, it is demonstrated that low levels of rare-earth additions leads to vastly improved texture and ductility in extrusions, as they do in rolled sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fraction of polygonal fenite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behavior as a function of plastic strain. X-ray analysis was used to characterize the volume fraction and carbon content of retained austenite. TEM and heat-tinting were utilized to analyze the effect of bainitic fenite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity mechanism during the early stages of deformation for a microstructure containing I5% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism in when there is 50% of polygonal ferrite in the microstructure. The baillitic fenite morphology affects the deformation mode of retained austenite during straining. The polygonal fenite behavior during straining depends on dislocation substructure tonned due to the deformation and the additional mobile dislocations caused by the TRIP effect. TRIP and TWIP effects depend not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent developments in the international education industry are notable in three respects. First, international student mobility has more than doubled in the last two decades or so. Second, programme mobility encompassing distance education has also led to new forms of cross-border education. Third, institution mobility through such commercial deals asfranchises and twinning arrangements are becoming an increasingly important feature of cross-border education, although on a limited scale. Such developments are leading to the emergence of a new market place for the international education industry. This article documents and analyses trends in painting a picture of these contemporary developments in crossborder education.