67 resultados para TiO2 anatase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 The Textile Institute. This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Esfandiar’s thesis is entitled “Surface Functionalization of Textiles with TiO2-Based Nano Composites”. Esfandiar introduced some properties such as the self-cleaning, antimicrobial activity, and UV protection to wool and cotton fabrics, analyzing the impact of influential parameters on the obtained results. His research findings arising from his assessment of diverse aspects of fabrics, coated with colloids, have made a contribution to the field by providing a clearer view on the concept of functionalized textiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems of wool as an important proteinous fiber is low resistance against alkali media. Finding a way to solve this problem without any influences on other fiber characteristics is still a matter of research. Using nano particles on textile materials is a new approach to produce novel properties. Here, nano titanium dioxide (NTO) particles along with butane tetra carboxylic acid (BTCA) were sonicated in the ultra sound bath and applied as a nano colloid on the wool fabric. BTCA played different roles as wool cross-linker, a polyanionic agent, and stabilizer for nano TiO2. Various concentrations of NTO and BTCA were applied through impregnation of the fabric in ultrasonic bath followed by curing. The resistance of fabrics against alkali was assessed by solubility in sodium hydroxide and the hydrophilicity monitored by the water drop absorption time and the contact angle before and after UV irradiation. Interestingly, the alkali solubility of the nano TiO2 treated wool fabrics reduced while the fabric became more hydrophilic. This fact was shown by the testing results and is thoroughly discussed in the article. The response surface methodology (RSM) was also applied to find the optimum conditions for the wool fabric treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wool is the most important animal fiber used in textile industries, but its photostability is very low. Scientists have searched for new ways to increase the photostability of wool. As TiO2 nano particles have features suitable for new applications, the UV-blocking power of nano TiO2 may be used for protecting fabrics against UV rays. Treatment of wool with TiO 2 can be effective for controlling photodegradation. This study focused on protecting wool fabric against UV rays using nano TiO2. To this end, oxidized and raw wool were treated with citric acid as the cross-linking agent and different concentrations of nano TiO2. The whiteness and yellowness of wool fabric samples were reported. XRD patterns proved the existence of TiO2 nano-particles on the wool surface. Finally, the results revealed that nano TiO2 is a suitable UV absorber on wool fabric and its effect depends on concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major barrier to the systematic improvement of biomimetic peptide-mediated strategies for the controlled growth of inorganic nanomaterials in environmentally benign conditions lies in the lack of clear conceptual connections between the sequence of the peptide and its surface binding affinity, with binding being facilitated by noncovalent interactions. Peptide conformation, both in the adsorbed and in the nonadsorbed state, is the key relationship that connects peptide-materials binding with peptide sequence. Here, we combine experimental peptide-titania binding characterization with state-of-the-art conformational sampling via molecular simulations to elucidate these structure/binding relationships for two very different titania-binding peptide sequences. The two sequences (Ti-1, QPYLFATDSLIK; Ti-2, GHTHYHAVRTQT) differ in their overall hydropathy, yet via quartz-crystal microbalance measurements and predictions from molecular simulations, we show these sequences both support very similar, strong titania-binding affinities. Our molecular simulations reveal that the two sequences exhibit profoundly different modes of surface binding, with Ti-1 acting as an entropically driven binder while Ti-2 behaves as an enthalpically driven binder. The integrated approach presented here provides a rational basis for peptide sequence engineering to achieve the in situ growth and organization of titania nanostructures in aqueous media and for the design of sequences suitable for a range of technological applications that involve the interface between titania and biomolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project develops a novel photocatalyst for the cleaning of textile dyeing wastewater. The newly-developed photocatalyst was prepared by combing porous boron nitride nanosheets with titanium dioxide particles and these composites show potentials for the practical treatment of the textile dyeing wastewater in a large scale.