81 resultados para Ti : sapphire


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloy Ti-6Al-4V is the most commonly used titanium alloy in the aerospace and biomedical industries due to its superior material properties. An experimental investigation has been carried out to evaluate the machinability of high performance aerospace alloys (Ti-6Al-4V) to determine their in service performance characteristics based on different machining strategies. Nearly 80-90% of the titanium used in airframes is Ti-6Al-4V. The experimental design consist of face milling Ti-6Al-4V at 12 different combinations of cutting parameters consisting of Depth Of Cut (DoC)- 1, 2 and 3 mm; speeds- 60 and 100 m/min; coolant on/off and at constant feed rate of 0.04mm/tooth. Post machining analysis consists of cutting force measurement, surface texture analysis and metallographic analysis. The future work consists of in-depth investigation into the phase transformational reactions during machining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, ultrafine equiaxed grains with a size of 150 to 800 nm were successfully produced in a Ti-6Al-4V alloy through thermomechanical processing of a martensitic starting microstructure. This was achieved through a novel mechanism of grain refinement consisting of several concurrent processes. This involves the development of substructure in the lath interiors at an early stage of deformation, which progressed into small high-angle segments with increasing strain. Consequently, the microstructure was gradually transformed to an equiaxed ultrafine grained structure, mostly surrounded by high-angle grain boundaries, through continuous dynamic recrystallization. Simultaneously, the supersaturated martensite was decomposed during deformation, leading to the progressive formation of beta phase, mainly nucleated on the intervariant lath boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transformation texture was studied in a Ti-6Al-4V alloy for two microstructures produced through different phase transformation mechanisms (i.e. diffusional vs. displacive). Both microstructures revealed qualitatively similar crystallographic texture characteristics, having two main texture components with Euler angles of (90°, 90°, 0°) and (90°, 30°, 0°). However, the overall α texture strength was considerably weaker in the martensitic structure (i.e. displacive mechanism) compared with the α + β microstructure produced through slow cooling (i.e. diffusional mechanism). The intervariant boundary distribution in martensite mostly revealed five misorientations associated with the Burgers orientation relationship. The five-parameter boundary analysis also showed a very strong interface plane orientation texture, with interfaces terminated mostly on the prismatic planes {hki0}, when misorientation was ignored. The highest intervariant boundary populations belonged to the 63.26°/[10 553 ] and 60°/[112 0] misorientations, with length fractions of 0.38 and 0.3, respectively. The former was terminated on (41 3 0), and the latter was a symmetric tilt boundary, terminated on (1 011). The intervariant plane distribution in martensite was determined more by the constraints of the phase transformation than by the relative interface energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure evolution of martensitic Ti-6Al-4V alloy was investigated through uniaxial hot compression at 700°C and a strain rate of 10-3 s-1. A combination of scanning electron microscopy observation in conjunction with high resolution electron back scattered diffraction (EBSD) was used to characterize the microstructure in detail. The development of the microstructure displayed continuous fragmentation of martensitic laths with increasing strain (i.e. continuous dynamic recrystallization), concurrently with decomposition of supersaturated martensite resulting in the formation of equiaxed grains. At a strain of 0.8, an ultrafine equiaxed grained structure with mostly high angle grain boundaries was successfully obtained. The current work proposes a novel approach to produce equiaxed ultrafine grains in a Ti-6Al-4V alloy through thermomechanical processing of a martensitic starting microstructure. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys are of great demand in the aerospace and biomedical industries. Most the titanium products are either cast or sintered to required shape and finish machined to get the appropriate surface texture to meet the design requirements. Ti-6Al-4V is often referred as work horse among the titanium alloys due to its heavy use in the aerospace industry. This paper is an attempt to investigate and improve the machining performance of Ti-6Al-4V. Thin wall machining is an advance machining technique especially used in machining turbine blades which can be done both in a conventional way and using a special technique known as trochoidal milling. The experimental design consists of conducting trials using combination of cutting parameters such as cutting speed (vc), 90 and 120 m/min; feed/tooth (fz) of 0.25 and 0.35 mm/min; step over (ae) 0.3 and 0.2; at constant depth of cut (ap) 20mm and using coolant. A preliminary assessment of machinability of Ti-6Al-4V during thin wall machining using trochoidal milling is done. A correlation established using cutting force, surface texture and dimensional accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloy (Ti-6Al-4V) has a wide range of application in various fields of engineering. Titanium is mainly used to manufacture aerospace components like landing gear, fuselage, wings, engines etc. and biomedical components like hip joint, knee joint, dental implants etc. Titanium has outstanding material properties such as corrosion resistance, fatigue strength, tensile strength and a very good biocompatibility which makes this material very alluring for biomedical applications. Contrary, the machinability of the material is problematic because of the phase transformations and thus, titanium alloy is a challenge for machining operation. This research is a comparative analysis between the implants manufactured by traditional method of casting and machining. The femoral stem of the hip joint replacement is designed and the component is machined using a five-axis CNC machine.The machined component was subjected to surface roughness testing, tensile testing and bulk hardness testing. The values were compared with the values of titanium implants manufactured by casting. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined effects of varying amounts of surfactant (ethylene bis-stearamide; EBS) and milling time on the compressibility of ball-milled Ti-10Nb-3Mo (wt.%) alloy were investigated. Ball milling process was performed on the elemental powders with different amounts of EBS (0-3. wt.%) for 5 and 10. h, and the ball-milled powders were consolidated by a uniaxial cold pressing in the range of 500-1100. MPa. Results indicated that the addition of surfactant in ball milling process lead to significant changes in particle packing density. The relative density was higher for powders ball milled with larger amounts of EBS and for the shorter milling time. The compressibility of powders was examined by the compaction equation developed by Panelli and Ambrosio Filho. The densification parameter (A) increased with the increasing amount of EBS, and decreased with increasing milling time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 A constitutive model was proposed in this thesis and a promising approach for accurate prediction of forming behaviour of high strength titanium alloy sheet metal forming at room temperature is presented. Outcomes showed a potential solution of cold roll forming of this material for aerospace and automotive structural applications.