82 resultados para Thermo-mechanical processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes some details of the mechanical and kinematics design of a five-axis mechanism. The design has been utilized to physically realize an industrial-scale five-axis milling machine that can carry a three KW spindle. However, the mechanism could be utilized in other material processing and factory automation applications. The mechanism has five rectilinear joints/axes. Two of these axes are arranged traditionally, i.e. in series, and the other three axes utilize the concept of parallel kinematics. This combination results in a design that allows three translational and two rotational two-mode degrees of freedom (DOFs). The design provides speed, accuracy and cost advantages over traditional five-axis machines. All axes are actuated using linear motors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pre-straining (PS) and bake-hardening (BH) on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) steels after: (i) thermomechanically processing (TMP) and (ii) intercritical annealing. The steels were characterised before and after PS/BH by transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile tests. The main microstructural differences were the higher volume fraction of bainite and more stable retained austenite in the TMP steel. This led to a difference in the strain-hardening behavior before and after BH treatment. The higher dislocation density in ferrite and formation of microbands in the TMP steel after PS and the formation of Fe3C carbides between the bainitic ferrite laths during BH for both steels also affected the strain-hardening behavior. However, both steels after PS/BH treatment demonstrated an increase in the yield and tensile strength.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group V–VI binary sulfides are semiconductors, and find application in a number of commercial devices. Synthesis of these metal sulfides is problematic, and traditional synthesis techniques utilizing thermal and chemical means have disadvantages such as a long process time, contamination, and the use of toxic substances. In this work, the novel synthesis technique of electric discharge assisted mechanical milling (EDAMM) has been used to rapidly synthesize Bi2S3 and Sb2S3 powders from elemental S and Sb/Bi powders. This technique is shown to be both rapid and successful, and produces crystalline metal sulfide powders with a particle size of approximately 2 μm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper the effect of grain refinement on the dynamic response of ultra fine-grained (UFG) structures for C–Mn and HSLA steels is investigated. A physically based flow stress model (Khan-Huang-Liang, KHL) was used to predict the mechanical response of steel structures over a wide range of strain rates and grain sizes. However, the comparison was restricted to the bcc ferrite structures. In previous work [K. Muszka, P.D. Hodgson, J. Majta, A physical based modeling approach for the dynamic behavior of ultra fine-grained structures, J. Mater. Process. Technol. 177 (2006) 456–460] it was shown that the KHL model has better accuracy for structures with a higher level of refinement (below 1 μm) compared to other flow stress models (e.g. Zerrili-Armstrong model). In the present paper, simulation results using the KHL model were compared with experiments. To provide a wide range of the experimental data, a complex thermomechanical processing was applied. The mechanical behavior of the steels was examined utilizing quasi-static tension and dynamic compression tests. The application of the different deformation histories enabled to obtain complex microstructure evolution that was reflected in the level of ferrite refinement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fractions of polygonal ferrite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interrupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behaviour as a function of plastic strain. X-ray analysis was used to characterise the volume fraction and carbon content of retained austenite. Transmission electron microscopy was utilised to analyse the effect of bainitic ferrite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity (TRIP) mechanism during the early stages of deformation for a microstructure containing 15% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism when there is 50% of polygonal ferrite in the microstructure. The bainitic ferrite morphology affects the deformation mode of retained austenite during straining. The polygonal ferrite behaviour during straining depends on dislocation substructure formed due to the deformation and the additional mobile dislocations caused by the TRIP effect. Operation of TRIP or twinning mechanisms depends not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum foams are now being introduced into automotive industry to reduce weight, to absorb energy in crash situations and to carry sound or heat absorbing functions. In the present study, a novel Spark Plasma Sintering (SPS) process for producing porous aluminums with controlled pore size and porosity and superior energy absorption has been developed. Experimental procedures included the mixing of starting powders, compacting, SPS sintering and leaching out of the space-holding particles. Porous aluminums with various porosities and a wide range of pore size distributions can be produced by the SPS process. Optical microscopy, scanning electron microscopy (SEM) and quantitative image analyses were used to characterize the porous aluminums. Compressive tests were carried out on the aluminum foams to evaluate the mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll forming (including corrugating) of high strength steel has for many years been treated as an art rather than a science. This work, by using analysis at both the microscopic and standard mechanical level, has demystified the production of these high strength steels, and has helped point the direction for further development of these efficient construction products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous materials are now becoming attractive to researchers interested in both scientific and industrial applications due to their unique combinations of physical, mechanical, thermal, electrical and acoustic properties in conjunction with excellent energy absorption characteristics. Metallic foams allow efficient conversion of impact energy into deformation work, which has led to increasing applications in energy absorption devices. In particular, foams made of aluminum and its alloys are of special interest because they can be used as lightweight panels, for energy absorption in crash situations and sound or heat absorbing functions in the automotive industry with the aim to reduce weight to improve crashworthiness, safety and comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents novel vehicle detection and classification method by measuring and processing magnetic signal based on single micro-electro- mechanical system (MEMS) magnetic sensor. When a vehicle moves over the ground, it generates a succession of impacts on the earth's magnetic field, which can be detected by single magnetic sensor. The magnetic signal measured by the magnetic sensor is related to the moving direction and the type of the vehicle. Generally, the recognition rate using single sensor detector is not high. In order to improve the recognition rate, a novel feature extraction algorithm and a novel vehicle classification and recognition algorithm are presented. The concavity and convexity areas, and the angles of concave and convex parts of the waveform are extracted. An improved support vector machine (ISVM) classifier is developed to perform vehicle classification and recognition. The effectiveness of the proposed approach is verified by outdoor experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Islands-in-the-sea nanofibres are a very interesting system: one polymer (islands) is distributed in fibrillar domains within a second polymer (sea). This fibre geometry is often used in microfiber technologies to obtain very fine fibers, by removing the “sea” polymer. This geometry also allows to combine two polymers with very different properties. In this work this geometry is introduced applied to electrospun hydrogel nanofibers, in a novel fashion, and as a way to improve and stabilize the hydrogel nanofibers. Thermo-responsive islands-in-the-sea nanofibers are here produced by electrospinning solutions of a hydrogel-forming thermo-responsive polymer (crosslinked poly(N-isopropylacrylamide), PNIPAM) and a reinforcing polymer (polyetherketone cardo, PEK-c). The two polymers are thermodynamically incompatible in solution and phase separation takes place, which allows the instant formation of islands-in-the-sea nanofibers upon electrospinning. PNIPAM was then crosslinked post-spinning using an oligomeric silsesquioxane. The formed nanocomposite nanofibers showed intrinsic nanostructure, where the fibril-like PNIPAM domains are intimately adjacent to the strong PEK-c domains. Upon contacting with water, the hydrogel domains became instantly highly swollen, while the PEK-c domains did not. As a result, very wrinkly, swollen fibers were obtained, with increased capillary action, as demonstrated through confocal microscopy. The composite nanofibers in water showed excellent swelling ratios and very fast responses to temperature variations (of the order of 1 second) with morphological and optical effects: variations in fiber-diameter were accompanied by optical transitions: transparent-opaque. The produced hydrogel nanofibers also presented improved mechanical properties (even with small amounts of PEK-c), when compared to their crosslinked-PNIPAM-only nanofibers. It will be also shown how these materials can be used as optical actuators and smart hydrogel platforms with tuneable contact angle and morphology. In brief, this work aims to demonstrate a new platform technology which can be applied to several hydrogel systems, to achieve hydrogel-based composites with new and improved properties, while retaining (and improving) the main properties of the hydrogel. Here this was demonstrated by showing that the composite materials showed thermo-responsiveness, and enhanced transition kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wool fabrics, ultrasonically treated in various chemical conditions and for different time durations, were analysed for thermal properties by thermo-gravimetric analysis and differential scanning calorimeter, in comparison with the untreated fabric. Fabric mechanical properties, such as bending and tensile performance, and changes in fibre morphology were also evaluated before and after ultrasonic treatment.It is found that wool treated with ultrasonics at the appropriate time, has less mass loss and a higher thermal degradation temperature than that without ultrasonic treatment or with prolonged ultrasonic treatment. Resistance to thermal degradation is reduced when wool is ultrasonically treated in the presence of alkali. Differential scanning calorimeter analysis shows that while ultrasonic treatment has little effect on fibre crystallinity, an appropriate treatment can provide wool with increased water absorption. Ultrasonic treatment stiffens wool fabric to some extent when the treatment time is prolonged. The addition of detergent alone to the ultrasonic bath has little effect on fabric tensile behaviour, whereas a treatment with both detergent and alkali produces severe fibre damage and significant loss of fabric tensile strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effects of kinematic and geometric asymmetries in rolling during multi-pass processing of IF steel are examined. The theoretical investigation by final element simulations and experimental investigations by means of electron-backscatter diffraction analysis and tensile tests suggest that asymmetric rolling increases the total imposed strain compared to symmetric rolling, and largely re-distributes the strain components due to additional shear. This enhances the intensity of grain refinement, strengthens and tilts crystallographic orientations, and increases mechanical strength. The effect is highest in the asymmetric rolling with differential roll diameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low cost ferrite and bainite(FB) steels offer the prospect of high ultimate tensile strength combined with high hole expansion ratio. The enhanced strain hardening and formabilityof FB steels were primarily associated with the fine ferrite matrix, the low residual stresses and dislocation densityand compatible deformation between both phases.This overview describes the various techniques to produce FB steels, and comparestheresulting microstructure, tensile propertiesand tretchflangeabilitywith conventional HSLA and DP steels.A new generation of ultrafine ferrite and nano-scalebainiteautomotive steelsisunder development forthe futuredemands of extremely high strength and ductilitythroughthe fabricationtechnologiesinvolvingphase transformationsandplastic deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed “acicular ferrite”) produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.