66 resultados para Stress degradation studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to examine whether depressive symptoms predict anxiety and stress or whether anxiety and stress precede depressive symptoms in fathers during the antenatal period. Background: The findings of previous studies suggest that there is an association between paternal depression, anxiety and stress during the antenatal period. However, the temporal inter-relationship between these variables has yet to be investigated. Method: Data were collected from 150 expectant couples at approximately 18, 25 and 33 weeks’ gestation. Results: After accounting for the relative stability of depression, anxiety and stress over time, for men higher levels of anxiety earlier in pregnancy predicted higher levels of depression and stress in middle pregnancy, which predicted higher depression during late pregnancy. A similar relationship remained after partialling out the effects of partner’s depression, perceived social support and sleep quality. Further analyses also revealed significant differences in the manifestation of distress symptoms between men and women, but not between first-time and non-first-time fathers. Conclusion: Our findings indicated a possible inter-relationship between depression, anxiety and stress for men antenatally. Our findings also showed that men who reported elevated depression, anxiety and stress earlier in the antenatal period also reported elevated symptomology at later time points. Finally, the current findings revealed that antenatal paternal stress may play a key role in the development of depression and anxiety later in pregnancy. Therefore, it may be important to screen for early levels of antenatal stress in men, as well as depression and anxiety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 42 amino acid Alzheimer's Aβ peptide is involved in the progression of Alzheimer's disease. Here we describe the effects of intracellular Aβ, produced through its attachment to either end of a green fluorescent protein, in yeast. Cells producing Aβ exhibited a lower growth yield and a heat shock response, showing that Aβ fusions promote stress in cells and supporting the notion that intracellular Aβ is a toxic molecule. These studies have relevance in understanding the role of Aβ in the death of neuronal cells, and indicate that yeast may be a new tractable model system for the screening for inhibitors of the stress caused by Aβ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly utilized for roll forming process design. Bending is the dominant deformation mode in roll forming and sheet materials used in the process are often temper rolled (skin passed), roller- or tension-levelled. These processes introduce residual stresses into the material, and recent studies have shown that those affect the material behaviour in bending. A thickness reduction rolling process available at Deakin that leads to material deformation similar to an industrial temper rolling operation was used in this study to introduce residual stresses into a dual phase, DP780, steel strip. The initial and thickness reduced strips were then used in a 5-stand experimental V-section roll forming set-up to identify the effect of residual stress on the final shape. The influence of residual stress and the effect of plastic deformation on the material behaviour in roll forming are separately determined in numerical simulation. The results show that the thickness reduction rolling process decreases the maximum bow height while the springback angle and end flare increase. Comparison with experimental results shows that using material data from the conventional tensile test in a numerical simulation does not allow for the accurate prediction of shape defects in a roll forming process if a residual stress profile exists in the material. On the other hand including the residual stress information leads to improved model accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: Skeletal muscle insulin resistance and oxidative stress are characteristic metabolic disturbances in people with type 2 diabetes. Studies in insulin resistant rodents show an improvement in skeletal muscle insulin sensitivity and oxidative stress following antioxidant supplementation. We therefore investigated the potential ameliorative effects of antioxidant ascorbic acid (AA) supplementation on skeletal muscle insulin sensitivity and oxidative stress in people with type 2 diabetes. METHODS: Participants with stable glucose control commenced a randomized cross-over study involving four months of AA (2×500mg/day) or placebo supplementation. Insulin sensitivity was assessed using a hyperinsulinaemic, euglycaemic clamp coupled with infusion of 6,6-D2 glucose. Muscle biopsies were measured for AA concentration and oxidative stress markers that included basal measures (2',7'-dichlorofluorescin [DCFH] oxidation, ratio of reduced-to-oxidized glutathione [GSH/GSSG] and F2-Isoprostanes) and insulin-stimulated measures (DCFH oxidation). Antioxidant concentrations, citrate synthase activity and protein abundances of sodium-dependent vitamin C transporter 2 (SVCT2), total Akt and phosphorylated Akt (ser473) were also measured in muscle samples. RESULTS: AA supplementation significantly increased insulin-mediated glucose disposal (delta rate of glucose disappearance; ∆Rd) (p=0.009), peripheral insulin-sensitivity index (p=0.046), skeletal muscle AA concentration (p=0.017) and muscle SVCT2 protein expression (p=0.008); but significantly decreased skeletal muscle DCFH oxidation during hyperinsulinaemia (p=0.007) when compared with placebo. Total superoxide dismutase activity was also lower following AA supplementation when compared with placebo (p=0.006). Basal oxidative stress markers, citrate synthase activity, endogenous glucose production, HbA1C and muscle Akt expression were not significantly altered by AA supplementation. CONCLUSIONS/INTERPRETATION: In summary, oral AA supplementation ameliorates skeletal muscle oxidative stress during hyperinsulinaemia and improves insulin-mediated glucose disposal in people with type 2 diabetes. Findings implicate AA supplementation as a potentially inexpensive, convenient, and effective adjunct therapy in the treatment of insulin resistance in people with type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids hormones (GCs) are intuitively important for mediation of age-dependent vertebrate life-history transitions through their effects on ontogeny alongside underpinning variation in life-history traits and trade-offs in vertebrates. These concepts largely derive from the ability of GCs to alter energy allocation, physiology and behaviour that influences key life-history traits involving age-specific life-history transitions, reproduction and survival. Studies across vertebrates have shown that the neuroendocrine stress axis plays a role in the developmental processes that lead up to age-specific early life-history transitions. While environmental sensitivity of the stress axis allows for it to modulate the timing of these transitions within species, little is known as to how variation in stress axis function has been adapted to produce interspecific variation in the timing of life-history transitions. Our assessment of the literature confirms that of previous reviews that there is only equivocal evidence for correlative or direct functional relationships between GCs and variation in reproduction and survival. We conclude that the relationships between GCs and life-history traits are complex and general patterns cannot be easily discerned with current research approaches and experimental designs. We identify several future research directions including: (i) integration of proximate and ultimate measures, including longitudinal studies that measure effects of GCs on more than one life-history trait or in multiple environmental contexts, to test explicit hypotheses about how GCs and life-history variation are related and (ii) the measurement of additional factors that modulate the effects of GCs on life-history traits (e.g. GC receptors and binding protein levels) to better infer neurendocrine stress axis actions. Conceptual models of HPA/I axis actions, such as allostatic load and reactive scope, to some extent explicitly predict the role of GCs in a life-history context, but are descriptive in nature. We propose that GC effects on life-history transitions, survival probabilities and fecundity can be modelled in existing quantitative demographic frameworks to improve our understanding of how GC variation influences life-history evolution and GC-mediated effects on population dynamics Lay Summary Functional Ecology