72 resultados para Shear bands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results from experiments conducted in a 2m high flow compartment at large Reynolds numbers are reported in this paper. Flow entered the compartment through an opening at the base on one side of the compartment and exited from an opening at the bottom of the opposite wall of the compartment. A shear layer is formed at the boundary between the incoming flow and the ambient fluid in the compartment. The impingement of the shear layer on the opposite wall of the compartment gives rise to periodic vortex formation and highly organized oscillations in the shear layer. When a density interface is present inside the compartment, resonance conditions were set up when the oscillations of the internal standing waves were “locked in” with the shear layer oscillations. Under resonance conditions, internal standing waves with amplitudes of up to 0.1m were observed. The formation of the internal standing waves is linked to the shear layer oscillations. Resonance conditions result when the shear layer is oscillating close to the natural frequency of the stratified fluid system in the compartment. The results of this investigation are applicable for fresh water storage in floating bottom-opened tanks in the sea, where under resonance conditions, entrainment rates could be significantly increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of experiments conducted in a 2m high flume at large Reynolds numbers are reported in this paper. The flume was partitioned into two compartments. Flow entered the bottom of the upstream test compartment as a wall jet, at jet Reynolds number ranging from 11,000 to 170,000. Periodic oscillations of the free surface in the two compartments resembling the oscillatory flow in a liquid-filled U-tube, and large coherent structures formed above the potential core of the wall jet were observed. Coupling of the U-tube oscillations and vortex shedding is attributed to fluid-dynamic and fluid-resonant feedback processes. For test compartment length, Lc=0.8m , fluid-resonant feedback was found to be dominant, and the shear layer was observed to oscillate at the natural frequency of the two-compartment, U-tube system. The observed U-tube oscillations are initiated by the oscillations of the shear layer at a frequency equal to the subharmonic component for the U-tube. The flow oscillations were generally weaker for Lc=1.2 and 2.0m with oscillation frequencies governed by fluid-dynamic feedback, verified from a comparison with the results from a previously reported study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When investigating sediment transport in laboratory open-channel flows, it is often necessary to remove sidewall effects for computing effective bed shear stress. Previous sidewall correction methods are subject to some assumptions that have not been completely verified, and different values of the bed shear stress may be obtained depending on the approach used in making sidewall corrections. This study provides a quantitative assessment of the existing correction procedures by comparing them to a new sidewall correction model proposed in this study. The latter was derived based on the shear stress function and equivalent roughness size for both rigid and mobile bed conditions, which were obtained directly from experimental measurements. The comparisons show that the Einstein correction formula and the Vanoni and Brooks method generally predict relatively lower and higher bed shear stresses, respectively, while the Williams’ empirical function leads to more scatter. This study also demonstrates that the widely used Vanoni and Brooks approach can be well approximated by a simple formula derived based on the Blasius resistance function. The sidewall effects, when removed in the different ways, would consequently affect the presentation of the bedload function. Experimental results of bedload transport, when plotted as the dimensionless transport rate against the dimensionless shear stress with the latter being corrected using the present model, exhibit less scatter than those associated with the previous procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 A macroscopic ductile fracture criterion is proposed based on micro-mechanism analysis of nucleation, growth and shear coalescence of voids from experimental observation of fracture surfaces. The proposed ductile fracture model endows a changeable cut-off value for the stress triaxiality to represent effect of micro-structures, the Lode parameter, temperature, and strain rate on ductility of metals. The proposed model is used to construct fracture loci of AA 2024- T351. The constructed fracture loci are compared with experimental data covering wide stress triaxiality ranging between –0.5 and 1.0. The comparison suggests that the proposed model can provide a satisfactory prediction of ductile fracture for metals from compressive upsetting tests to plane strain tension with slanted fracture surfaces. Moreover, it is expected that the proposed model reasonably describes ductile fracture behavior in high velocity perforation simulation since a reasonable cut-off value for the stress triaxiality is coupled with the proposed ductile fracture criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex molecules have been successfully grafted onto the surface of unsized carbon fibre, a heterogeneous material which is a challenge to functionalise. The in situ generation of highly reactive phenyldiazo-species from their corresponding anilines was employed to achieve this task. The success of an initial proof-of-concept study (bearing a nitro moiety) supported by X-ray Photoelectron Spectroscopy (XPS) and physical characterisation, led to the design and synthesis of a more complex compound possessing a pendant amine moiety which could theoretically react with an epoxide based resin. After attachment to unsized oxidised fibres, analysis by XPS of the resulting fibres (fluorine used as an XPS tag) indicated a marked difference in functionalisation success which was attributed to steric factors, shown to be critical in influencing the attachment of the phenyldiazo-intermediate to the carbon fibre surface. Analysis of key fibre performance parameters of these fibres showed no change in elastic modulus, strength, surface topography or microscopic roughness when compared to the control unsized oxidised fibres. The functionalised fibres did however show a large increase in coefficient of friction. Single fibre fragmentation tests indicated a marked increase in interfacial shear strength, which was attributed to the pendent amine functionalities interacting with the epoxy resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently established means of surface functionalization of unsized carbon fibres for enhanced compatibility with epoxy resins was optimised and evaluated using interfacial shear stress measurements. Interfacial adhesion has a strong influence on the bulk mechanical properties of composite materials. In this work we report on the optimisation of our aryl diazo-grafting methodology via a series of reagent concentration studies. The fibres functionalised at each concentration are characterised physically (tensile strength, modulus, coefficient of friction, and via AFM), and chemically (XPS). The interfacial shear strength (IFSS) of all treated fibres was determined via the single fibre fragmentation test, using the Kelly-Tyson model. Large increases in IFSS for all concentrations (28-47%) relative to control fibres were observed. We show that halving the reagent concentration increased the coefficient of friction of the fibre and the interfacial shear strength of the composite while resulting in no loss of the key performance characteristics in the treated fibre.