114 resultados para Severe Plastic-Deformation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi scale CAFE model for the prediction of initiation and propagation of the micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented. The CAFE approach is the combination of the Cellular Automata (CA) and the Finite Element (FE) methods. The application of the developed CAFE model to analyze material flow during extrusion is the objective of the present work. The proposed CAFE approach is applied in this work to simulation of the extrusion with flat face and convex dies and to investigate differences in the material flow. The initial FE meshes with the set of the CA point are generated for the numerical tests and the results of the metal flow predicted by the CAFE method are presented in the paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sheet metal forming process basically involves the shaping of sheet metal of various thickness and material properties into the desired contours. This metal forming process has been extensively used by the automotive industry to manufacture both car panels and parts. Over the years numerous investigations have been conducted on various aspects of the manufacturing process with varied success. In recent years the requirements on the sheet metal forming industry have headed towards improved stability in the forming process while lowering environmental burdens. Therefore the overall aim of this research was to identify a technique for developing lubricant formulations that are insensitive to the sheet metal forming process. Due to the expense of running experiments on production presses and to improve time efficiency of the process the evaluation procedure was required to be performed in a laboratory. Preliminary investigations in the friction/lubricant system identified several laboratory tests capable of measuring lubricant performance and their interaction with process variables. However, little was found on the correlation between laboratory tests and production performance of lubricants. Therefore the focus of the research switched to identifying links between the performance of lubricants in a production environment and laboratory tests. To reduce the influence of external parameters all significant process variables were identified and included in the correlation study to ensure that lubricant formulations could be desensitised to all significant variables. The significant process variables were found to be sensitive to die position, for instance: contact pressure, blank coating of the strips and surface roughness of the dies were found significant for the flat areas of the die while no variables affected friction when polished drawbeads were used. The next phase was to identify the interaction between the significant variables and the main lubricant ingredient groups. Only the fatty material ingredient group (responsible for the formation of boundary lubricant regimes) was found to significantly influence friction with no interaction between the ingredient groups. The influence of varying this ingredient group was then investigated in a production part and compared to laboratory results. The correlation between production performance and laboratory tests was found to be test dependant. With both the Flat Face Friction test and the Drawbead Simulator unaffected by changes in the lubricant formulation, while the Flat Bottom Cup test showing similar results as the production trial. It is believed that the lack of correlation between the friction tests and the production performance of the lubricant is due to the absence of bulk plastic deformation of the strip. For this reason the Ohio State University (OSU) friction test was incorporated in the lubricant evaluation procedure along with a Flat Bottom Cup test. Finally, it is strongly believed that if the lubricant evaluation procedure highlighted in this research is followed then lubricant formulations can be developed confidently in the laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of a bake-hardening (BH) treatment on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) and Dual Phase (DP) steels after: (i) thermomechanical processing (TMP) and (ii) intercritical annealing (IA). The steels were characterized using X-ray diffraction, transmission electron microscopy (TEM) and three-dimensional atom probe tomography (APT). All steels showed high BH response. however, the DP and trip steels after IA/BH showed the appearance of upper and lower yield points, while the stress-strain behavior of the trip steel after TMP/BH was still continuous. This was due to the higher volume fraction of bainite and more stable retained austenite in the TMP/BH steel, the formation of plastic deformation zones with high dislocation density around the "as-quenched” martensite and “TRIP” martensite in the IA/BH DP steel and IA/BH TRIP steel, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 °C using a strain rate of 1 s−1. High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract A detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulaA detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulations are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.tions are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis studied the plastic deformation behaviour of bulk metallic glasses by conducting indentations on various thermal histories using bonded interface technique. Another effort was to probe the route to fabricate bulk amorphous alloy via consolidating amorphous powder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the behaviour of the superplastic deformation of metallic glasses and Pilling’s model, a diffusion bonding model suitable for metallic glasses is proposed in the present study. In the current model, the diffusion bonding processes consists of two stages: one is the plastic deformation stage and the other is the void shrinkage stage, in which, the atom diffusion and superplastic deformation are responsible for the void shrinkage. Applying this model to the diffusion bonding of a Zr based metallic glass, the predicted bonding time is in good agreement with the experimental result. A map for determining the bonding temperature and time to achieve high quality bonding in a Zr based metallic glass is suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interlaminar toughening of a carbon-fibre reinforced composite by incorporation of electrospun polyvinylidene fluoride (PVDF) nanofibrous membranes was explored in this work. The nanofibres were electrospun directly onto commercial pre-impregnated carbon fibre materials under optimised conditions and PVDF was found to primarily crystallise in its β phase polymorphic form. There is strong evidence from DMTA analysis to suggest that a partial miscibility between the amorphous phases of the PVDF nanofibres and the epoxy exists. The improved plastic deformation at the crack tip after inclusion of the nanofibres was directly translated to a 57% increase in the mode II interlaminar fracture toughness (in-plane shear failure). Conversely, the fracture toughness in mode I (opening failure) was slightly lower than the reference by approximately 20%, and the results were interpreted from the complex micromechanisms of failure arising from the changes in polymorphism of the PVDF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bake-hardening (BH) behavior of TRansformation Induced Plasticity (TRIP) and Dual-Phase (DP) steels after intercritical annealing (IA) has been studied using transmission electron microscopy, X-ray diffraction and three dimensional atom probe tomography. It was found for the DP steel that carbon can segregate to dislocations in the ferrite plastic deformation zones where there is a high dislocation density around the "asquenched" martensite. The carbon pinning of these dislocations, in turn, increases the yield strength after aging. It was shown that bake-hardening also leads to rearrangement of carbon in the martensite leading to the formation of rod-like low temperature carbides in the DP steel. Segregation of carbon to microtwins in retained austenite of the TRIP steel was also evident. These factors, in combination with the dislocation rearrangement in ferrite through the formation of cells and microbands in the TRIP steel after pre-straining, lead to the different bake-hardening responses of the two steels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unfavourable effect of hooking or softening, respectively, on fracture strength of joints made using friction stir lap welding (FSLW) is known but the combined effect on the magnitude of strength reduction is not clear. In this study, FSLW experiments using AA6060-T5 and AZ31B-H24 alloys were conducted. For both alloys, rotation speed has a dominant effect on increasing the hook size due to increasing the stir flow volume thus lifting more the original lapping surfaces. In AA6060 welds, FS softening has limited the strength, when hook size approaches zero. Meanwhile hook starts to reduce the strength significantly, when its size reaches a critical value. The maximum strength of AA6060 FSL welds reaches ~ 70% of the base metal UTS when hook size approaches zero. This is in contract to ~30% for AZ31B FSL welds. This can be explained by the local plastic deformation behaviour during lap tensile testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on n-value differential equation and microstructural observation, strain hardening behaviors of FBDP, TRIP, and TWIP steels during uniaxial tension were investigated. TRIP steel exhibits both superior strength and ductility than FBDP steel, and TWIP steel displays much higher total and uniform elongations in comparison to FBDP and TRIP steels. The instantaneous n values of FBDP and TRIP steels increase at small strains, reach a maximum value, smoothly decrease at higher strains, and then rapidly drop up to the specimen rupture. The strain hardening of TRIP steel persists at higher strains where that of FBDP steel begins to diminish. TWIP steel exhibits gradually increased instantaneous n values over the whole uniform plastic deformation, implying that TWIP steel shows a much larger strain hardening capability than FBDP and TRIP steels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiscale modelling of stress and strain partitioning in DP steel was carried out using both realistic microstructure-based RVE models as well as stochastic microstructures generated by Monte Carlo method. The stochastic microstructure models were shown to resemble that of realistic microstructures, enabling research on the specific aspects of the microstructure that could be difficult to control and study during experimental work. One such feature of the realistic microstructures studied in this work was the grain size and microstructure morphology. The microstructures were generated with varying average grain sizes while all other parameters, such as boundary conditions, material properties and volume fractions of martensite and ferrite were kept constant. It is found that the effect of grain size is much more pronounced during the initial localisation of the plastic deformation at and around the interface of the phases. In addition, the decrease in ductility and increase in strength of the DP steels are directly related to the refinement of grain sizes of each phase and the stress-strain partitioning in between them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR). The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT) based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An open-cell titanium foam with relative density of 0.2 was prepared by powder metallurgical process. The compressive mechanical properties of the foam at the different temperatures in the range of 20-600°C were measured and the temperature-dependence of its mechanical properties was discussed. The results indicate that the foam material exhibit fragile fracture characteristic at room temperature. When it is deformed over 200°C, the stress-strain curves exhibit plastic deformation characteristic, including three distinct regions: the linear elasticity region, the plastic collapse region, and the densification region. The Young's modulus, yield stress and elastic limit decrease with increasing of temperature. The temperature-dependence of these properties can be expressed as E*=1.5217 × 10 9-5.988 × 10 5T, σ cl*=85.7-0.095T, σ ys*=99.1-0.167V7.02 × 10 -5T 2 respectively.