64 resultados para Set


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose an algorihm for conneced p-percent coverage probem in Wireless Sensor Networks(WSNs) to improve the over netork life time. In this work, we invstigae the p-pernt coverage problem(PCP) in WSNs which require % of n area should be monitored correctl and to find ou ny additional requirements of the connec p-percent coverge prom. We prose pDCDS algorith which is a learnin autmaton basd algorithm fr PCP pDCDS is a Degreconsained Connected Domining Se based algoithm whch detect the minimum numbe of des to monitor an area. The simulation results demonstrate hat pDCDS can remarkably improve the network lifetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Privacy preserving on data mining and data release has attracted an increasing research interest over a number of decades. Differential privacy is one influential privacy notion that offers a rigorous and provable privacy guarantee for data mining and data release. Existing studies on differential privacy assume that in a data set, records are sampled independently. However, in real-world applications, records in a data set are rarely independent. The relationships among records are referred to as correlated information and the data set is defined as correlated data set. A differential privacy technique performed on a correlated data set will disclose more information than expected, and this is a serious privacy violation. Although recent research was concerned with this new privacy violation, it still calls for a solid solution for the correlated data set. Moreover, how to decrease the large amount of noise incurred via differential privacy in correlated data set is yet to be explored. To fill the gap, this paper proposes an effective correlated differential privacy solution by defining the correlated sensitivity and designing a correlated data releasing mechanism. With consideration of the correlated levels between records, the proposed correlated sensitivity can significantly decrease the noise compared with traditional global sensitivity. The correlated data releasing mechanism correlated iteration mechanism is designed based on an iterative method to answer a large number of queries. Compared with the traditional method, the proposed correlated differential privacy solution enhances the privacy guarantee for a correlated data set with less accuracy cost. Experimental results show that the proposed solution outperforms traditional differential privacy in terms of mean square error on large group of queries. This also suggests the correlated differential privacy can successfully retain the utility while preserving the privacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless mesh networks are widely applied in many fields such as industrial controlling, environmental monitoring, and military operations. Network coding is promising technology that can improve the performance of wireless mesh networks. In particular, network coding is suitable for wireless mesh networks as the fixed backbone of wireless mesh is usually unlimited energy. However, coding collision is a severe problem affecting network performance. To avoid this, routing should be effectively designed with an optimum combination of coding opportunity and coding validity. In this paper, we propose a Connected Dominating Set (CDS)-based and Flow-oriented Coding-aware Routing (CFCR) mechanism to actively increase potential coding opportunities. Our work provides two major contributions. First, it effectively deals with the coding collision problem of flows by introducing the information conformation process, which effectively decreases the failure rate of decoding. Secondly, our routing process considers the benefit of CDS and flow coding simultaneously. Through formalized analysis of the routing parameters, CFCR can choose optimized routing with reliable transmission and small cost. Our evaluation shows CFCR has a lower packet loss ratio and higher throughput than existing methods, such as Adaptive Control of Packet Overhead in XOR Network Coding (ACPO), or Distributed Coding-Aware Routing (DCAR).