108 resultados para Robotic homing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new theoretical development and modelling related to the requirement of the minimum number of sensors necessary for slippage prevention in robotic grasping. A fundamental experimental investigation has been conducted to support the newly developed postulate. A series of basic experiments proved that it is possible to evaluate the contributions of various sensors to slippage prevention and control in robotic grasping. The use of three discrete physical sensors, one for each of the three sensing functions (normal, tangential and slippage), has been proven to be the most reliable combination for slippage prevention in robotic grasping. It was also proven that the best performance from a two-sensor combination can be achieved when normal grasp force and tangential force are both monitored in the grasping process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research into underwater robotic applications is currently a growing field. There are many challenges involved in underwater robotics that are not present in other mediums, such as how the harsh environmental conditions that this environment invokes onto the robot and any equipment that is attached to the robot. In this paper an attachment to an underwater gripper is proposed that adds another Degree Of Freedom to the system, thus allowing the gripper to move along the belly of the robot. Adding this functionality to the gripper has many advantages, some of which involve the robot being able to easily pass a collected object to another robot with minimal interference. This attachment is constructed using 3D printed parts, a waterproofed servomotor and a leadscrew to provide linear motion to a commercial gripper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developments and advances in ground and aerial robotics have presented many end user, 'off the shelf' products for use in areas such as search and rescue, recreation, filming, defense forces and sporting. Advances in underwater robotics however have not yet become as established and widespread as their ground and aerial counterparts, though this field is emerging very quickly. Many underwater robotic vessels are built from expensive, complex components and circuitry which are often tethered to a power source and controlled remotely. This greatly limits their effectiveness and potential range. The Goal was to construct two or more simple robotic fish made from 'off the shelf' products, making use of modern technologies such as 3D printing to assist in the design and manufacture process. And further that each fish is capable of swarming with other fish and interacting with objects in water. Two points of note is the calibration of IR sensors for use underwater and the magnetic coupling of the tail foil to the fish body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teleoperation remains an important aspect for robotic systems especially when deployed in unstructured environments. While a range of research strives for robots that are completely autonomous, many robotic applications still require some level of human-in-The-loop control. In any situation where teleoperation is required an effective User Interface (UI) remains a key component within the systems design. Current advancements in Virtual Reality (VR) software and hardware such as the Oculus Rift, HTC Vive and Google Cardboard combined with greater transparency to robotic systems afforded by middleware such as the Robot Operating System (ROS) provides an opportunity to rapidly improve traditional teleoperation interfaces. This paper uses a System of System (SoS) approach to present the concept of a Virtual Reality Dynamic User Interface (VRDUI) for the teleoperation of heterogeneous robots. Different geometric virtual workspaces are discussed and a cylindrical workspace aligned with interactive displays is presented as a virtual control room. A presentation mode within the proposed VRDUI is also detailed, this shows how point cloud information obtained from the Microsoft Kinect can be incorporated within the proposed virtual workspace. This point cloud data is successfully processed into an OctoMap utilizing the octree data structure to create a voxelized representation of the 3D scanned environment. The resulting OctoMap is then displayed to an operator as a 3D point cloud using the Oculus Rift Head Mounted Display (HMD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was carried out to fill the gap within existing knowledge on the approaches to supplement the training for micro-robotic cell injection procedure by utilising virtual reality and haptic technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial neural network (NN) is an alternative way (to conventional physical or chemical based modeling technique) to solve complex ill-defined problems. Neural networks trained from historical data are able to handle nonlinear problems and to find the relationship between input data and output data when there is no obvious one between them. Neural Networks has been successfully used in control, robotic, pattern recognition, forecasting areas. This paper presents an application of neural networks in finding some key factors eg. heat loss factor in power station modeling process. In the conventional modeling of power station, these factors such as heat loss are normally determined by experience or “rule of thumb”. To get an accurate estimation of these factors special experiment needs to be carried out and is a very time consuming process. In this paper the neural networks (technique) is used to assist this difficult conventional modeling process. The historical data from a real running brown coal power station in Victoria has been used to train the neural network model and the outcomes of the trained NN model will be used to determine the factors in the conventional energy modeling of the power stations that is under the development as a part of an on-going ARC Linkage project aiming to detail modeling the internal energy flows in the power station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on the development of a haptic recording and modelling system. Currently being evaluated for multiple uses in surgery and manufacturing, this recording system evaluates haptic data captured via a robotic ann coupled with real time high-resolution load cell. This data is then analysed and validated against previous samples and a generated model before being logged for playback during simulation and training of a human operator. 3D models of point force interactions are created allowing unique visuals to be presented to a user. Primarily designed for the medical field, recorded results of soft tissue cutting have been presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teleoperated robotic systems provide a valuable solution for the exploration of hazardous environments. The ability to explore dangerous environments from the safety of a remote location represents an important progression towards the preservation of human safety in the inevitable response to such a threat. While the benefits of removing physical human presence are clear, challenges associated with remote operation of a robotic system need to be addressed. Removing direct human presence from the robot's operating environment introduces telepresence as an important consideration in achieving the desired objective. The introduction of the haptic modality represents one approach towards improving operator performance subject to reduced telepresence. When operating in an urban environment, teleoperative stair climbing is not an uncommon scenario. This work investigates the operation of an articulated track mobile robot designed for ascending stairs under teleoperative control. In order to assist the teleoperator in improved navigational capabilities, a fuzzy expert system is utilised to provide the teleoperator with intelligent haptic augmentation with the aim of improving task performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teleoperation has been used in many applications, allowing a human operator to remotely control a robotic system in order to perform a particular task. Recently haptic teleoperation has focused mainly on improving performance in remote manipulation tasks, however the haptic approach offers similar advantages for teleoperative control of the motion of a mobile robot. This paper describes a prototype system designed to facilitate haptic teleoperation of an all-terrain, articulated track mobile robot. This system utilizes a multi-modal user interface intended to improve operator immersion, reduce operator overload and improve teleoperative task performance. The system architecture facilitates implementation of an application-specific haptic augmentation algorithm in order to improve operator performance in challenging real-world tasks. The contributions of this work can be categorized as the custom mobile platform, teleoperator interface and haptic augmentation strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an efficient technique to design dynamic feedback control scheme for single-link flexible manipulators.  A linear model can be derived for the robotic system using the assumed-mode method.  Conventional techniques such as pole-placement or LQR require physical measurements of all systme states,  posing a stringent requirement for its implementation.  To overcome this problem, a low-order state functional observer is proposed here for reconstruction of the state feedback control action.  The observer design involves solving an optimisation problem with the objective to generate a feedback gain that is as close as possible to that of the required feedback controller.  A condition for robust stability of the closed-loop system under the observer-based control scheme is given.  The attractive features of the propsed technique are the resulted functional state observer is of a very low order and it requires only sensor measurements of only the output- the tip position of the arm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teleoperated mobile robots provide the ability for a human operator to safely explore and evaluate hazardous environments. This ability represents an important progression towards the preservation of human safety in the inevitable response to situations such as terrorist activities and urban search and rescue. The benefits of removing physical human presence from such environments are obvious, however challenges inhibiting task performance when remotely operating a mobile robotic system need to be addressed. The removal of physical human presence from the target environment introduces telepresence as a vital consideration in achieving the desired objective. Introducing haptic human-robotic interaction represents one approach towards improving operator performance in such a scenario. Teleoperative stair traversal proves to be a challenging task when undertaking threat response in an urban environment. This article investigates the teleoperation of an articulated track mobile robot designed for traversing stairs in a threat response scenario. Utilising a haptic medium for bilateral human-robotic interaction, the haptic cone methodology is introduced with the aim of providing the operator with a vision-independent, intuitive indication of the current commanded robot velocity. The haptic cone methodology operates synergistically with the introduced fuzzy-haptic augmentation for improving teleoperator performance in the stair traversal scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One stage in designing the control for underwater robot swarms is to confirm the control algorithms via simulation. To perform the simulation Microsoftpsilas Robotic Studiocopy was chosen. The problem with this simulator and others like it is that it is set up for land-based robots only. This paper explores one possible way to get around this limitation. This solution cannot only work for underwater vehicles but aerial vehicles as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.