74 resultados para RENEWABLE ENERGY SOURCES


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although Renewable energy applications in Middle East countries were started in the middle of the seventies, they have only gained momentum in the last ten years. Considering the past gained experience, a proposed national Renewable Energy (RE) plan aims toward bringing RE into the main stream of the national energy supply system with a target contribution of 10% of the electricity demand by the year 2020. The proposed plan calls for a wide spectrum of renewable energy applications. This paper will highlight renewable energy applications in Middle East countries, the gained experience, the RE resources, and the future prospects for the utilization of RE recourses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind farms are producing a considerable portion of the world renewable energy. Since the output power of any wind farm is highly dependent on the wind speed, the power extracted from a wind park is not always a constant value. In order to have a non-disruptive supply of electricity, it is important to have a good scheduling and forecasting system for the energy output of any wind park. In this paper, a new hybrid swarm technique (HAP) is used to forecast the energy output of a real wind farm located in Binaloud, Iran. The technique consists of the hybridization of the ant colony optimization (ACO) and particle swarm optimization (PSO) which are two meta-heuristic techniques under the category of swarm intelligence. The hybridization of the two algorithms to optimize the forecasting model leads to a higher quality result with a faster convergence profile. The empirical hourly wind power output of Binaloud Wind Farm for 364 days is collected and used to train and test the prepared model. The meteorological data consisting of wind speed and ambient temperature is used as the inputs to the mathematical model. The results indicate that the proposed technique can estimate the output wind power based on the wind speed and the ambient temperature with an MAPE of 3.513%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper analyses the impact of urbanization and trade openness on emissions and energy intensity in twenty-two increasingly urbanized emerging economies. We employ three second-generation heterogeneous linear panel models as well as recently developed nonlinear panel estimation techniques allowing for cross-sectional dependence. The empirical results show that population density and affluence increase emissions and energy intensity while renewable energy seems to be dormant in these emerging economies, but non-renewable energy increases both CO2 emissions and energy intensity. In addition, openness significantly reduces both pollutant emissions and energy intensity whereas urbanization significantly increases energy intensity, but it is insignificant in increasing emissions. This may be, in part, due to the recent increasing trend in adopting cleaner technologies in these increasingly urbanized developing economies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microgrid (MG) power system with Distributed Generation (DG) plays an important role to provide reliable, secure, and low carbon emission energy supply for communities, in case of any failure or disturbance of energy supply from the main grid. At the same time, DG also contributes to several technical issues in the MG distribution network. Power quality (PQ) issues are one of the main technical challenges when integrating Renewable Energy (RE) sources in MG network. In this paper, the PQ issues like; power variation, voltage deviation, and Total Harmonic Distortion (THD) have been addressed by an impact analysis study on a typical solar PV MG power system in both on-grid and off-grid mode of operation. Analysis results from the study will be helpful in developing an independent MG power system with improved PQ conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microgrid (MG) power system plays an important role to fulfill reliable and secure energy supply to critical loads of communities as well as for communities in remote area. Distributed Generation (DG) sources integrated in a MG provides numerous benefits, at the same time leads to power quality issues in the MG power distribution network. Power Quality (PQ) issue arises due to the integration of an intermittent nature of Renewable Energy (RE) sources with advanced Power Electronics (PE) converter technology. Also, presence of non-linear and unbalancing loads in MG seems to affect PQ of the energy supply in power distribution network. In this paper, PQ impacts like; power variation, voltage variation, Total Harmonic Distortion (THD), and Unbalance voltage level have been analysed in Low Voltage (LV) distribution network of typical MG power system model. In this study, development of MG model and PQ impact analysis through simulation has been done in PSS-Sincal software environment. Analysis results from the study can be used as a guideline for developing a real and independent MG power system with improved PQ conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly un-balance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy and communication infrastructure for disaster resilience in rural and regional Australia, Regional Studies. Australia's rural and regional areas are prone to frequent natural disasters with extensive socio-economic impacts. Resultant damage to large-grid energy and communication networks can lead to widespread, lengthy outages, signalling the need for alternative infrastructure developments to aid disaster risk reduction and resilience-building (DRRR). Distributed smart renewable energy micro-grid systems can mitigate adverse impacts through outage prevention and rapid service restoration, increase rural and regional resilience, and offer communities opportunities for socio-economic development. However, renewable energy and digital communications policy uncertainty currently adversely affects disaster preparedness and investment in alternative infrastructure, undermining rural and regional futures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a renewable and non-polluting energy source, wind is used to produce electricity via large-diameter horizontal or vertical axis wind turbines. Such large wind turbines have been well designed and widely applied in industry. However, little attention has been paid to the design and development of miniature wind energy harvesters, which have great potential to be applied to the HVAC (heating, ventilating and air conditions) ventilation exhaust systems and household personal properties. In this work, 10 air-driven electromagnetic energy harvesters are fabricated using 3D printing technology. Parametric measurements are then conducted to study the effects of (1) the blade number, (2) its geometric size, (3) aspect ratio, presence or absence of (4) solid central shaft, (5) end plates, and (6) blade orientation. The maximum electrical power is 0.305 W. To demonstrate its practical application, the electricity generated is used to power 4 LED (light-emitting diode) lights. The maximum overall efficiency ηmax is approximately 6.59%. The cut-in and minimum operating Reynolds numbers are measured. The present study reveals that the 3D printed miniature energy harvesters provide a more efficient platform for harnessing ‘wind power’.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work develops a transactive energy management system in order to automate the operation and efficiently utilize the energy generated from the solar PV unit and BESS in a single house as well as in the microgrid and provides cost-benefit analysis.