82 resultados para Production of Subjectivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes are one of the most prominent materials in research for creating electrodes for portable electronics. When coupled with metallic nanoparticles the performance of carbon nanotube electrodes can be dramatically improved. Microwave reduction is an extremely rapid method for producing carbon nanotube-metallic nanoparticle composites, however, this technique has so far been limited to carbon nanotube soot. An understanding of the microwave process and the interactions of metallic nanoparticles with carbon nanotubes have allowed us to extend this promising functionalisation route to pre-formed CNT electrode architectures. Nanoparticle reduction onto pre-formed architectures reduces metallic nanoparticle waste as particles are not formed where there is insufficient porosity for electrochemical processes. A two-fold increase in capacitive response, stable over 500 cycles, was observed for these composites, with a maximum capacitance of 300 F g−1 observed for a carbon Nanoweb electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wound-inducible quinolinate phosphoribosyl transferase promoter from Nicotiana tabacum (NtQPT2) was assessed for its capacity to produce B-subunit of the heat-labile toxin (LTB) from enterotoxigenic Escherichia coli in transgenic plant tissues. Comparisons were made with the widely used and constitutive Cauliflower Mosaic Virus 35S (CaMV35S) promoter. The NtQPT2 promoter produced somewhat lower average concentrations of LTB protein per unit weight of hairy root tissue but allowed better growth thereby producing similar or higher overall average yields of LTB per culture batch. Transgenic tobacco plants containing the NtQPT2-LTB construct contained LTB protein in roots but not leaves. Moreover, wounding NtQPT2-LTB transgenic plants, by removal of apices, resulted in an approximate 500% increase in LTB levels in roots when analysed several days later. CaMV35S-LTB transgenic plants contained LTB protein in leaves and roots but wounding made no difference to their LTB content.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Goat fibre production is affected by genetic and environmental influences. Environmental influences which are the subject of this review include bio–geophysical factors (photoperiod, climate–herbage system and soil–plant trace nutrient composition), nutrition factors and management factors. Nutrition and management influences discussed include rate of stocking, supplementary feeding of energy and protein, liveweight change, parturition and management during shearing. While experimental data suggest affects of seasonal photoperiod on the growth of mohair and cashmere are large, these results may have confounded changes in temperature with photoperiod. The nutritional variation within and among years is the most important climatic factor influencing mohair and cashmere production and quality. Mohair quality and growth is affected significantly by rate of stocking and during periods of liveweight loss by supplementary feeding of either energy or protein. Strategic use of supplements, methods for rapid introduction of cereal grains, influence of dietary roughage on intake and the economics of supplementary feeding are discussed. Cashmere production of young, low producing goats does not appear to be affected by energy supplementation, but large responses to energy supplementation have been measured in more productive cashmere goat strains. The designs of these cashmere nutrition experiments are reviewed. Evidence for the hypothesis that energy-deprived cashmere goats divert nutrients preferentially to cashmere growth is reviewed. The influence and potential use of liveweight manipulation in affecting mohair and cashmere production and quality are described. Estimates of the energy requirements for the maintenance of fibre goats and the effect of pregnancy and lactation on mohair and cashmere growth are summarised. The effects and importance of management and hygiene during fibre harvesting (shearing) in producing quality fibre is emphasised. The review concludes that it is important to assess the results of scientific experiments for the total environmental content within which they were conducted. The review supports the view that scientific experiments should use control treatments appropriate to the environment under study as well as having controls relevant for other environments. In mediterranean and annual temperate environments, appropriate controls are liveweight loss and liveweight maintenance treatments. Mohair producers must graze goats at moderate rates of stocking to maximise animal welfare, but in so doing, they will produce heavier goats and coarser mohair. In mediterranean and annual temperate environments, seasonal changes in liveweight are large and influence both quality and production of mohair and cashmere. Mohair and cashmere producers can manipulate liveweight by supplementary feeding energy during dry seasons to minimise liveweight loss, but the economics of such feeding needs to be carefully examined. Strategic benefits can be obtained by enhancing the growth of young does prior to mating and for higher producing cashmere goats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality wrinkled and few-layered graphene sheets have been produced via a mechano-thermal exfoliation process for a simple, effective and low-cost mass production. Graphene sheets were produced by first ball milling of graphite with ammonium chloride followed by thermal annealing at 800 °C in nitrogen gas. The few layered graphene sheets show highly efficient selectivity and capacity for the absorption of petroleum products as well as organic solvents such as ethanol, cyclohexane and chloroform (up to 82, 42 and 98 times of their own weight, respectively). The saturated few-layered graphene sheets can be cleaned for reuse by simply burning in air. The low-cost strategy for mass production and easy recycling routes demonstrate the great potential of few-layered graphene sheets for oil removal.