71 resultados para POLYMER ELECTROLYTE MEMBRANES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report a facile method for controlling the morphology and porosity of porous siloxane membranes through manipulation of the water content of precursor microemulsions. The polymerizable microemulsion precursors consisted of a methacrylate-terminated siloxane macromonomer (MTSM) as the oil phase, nonionic surfactant (Teric G9A8), water, and cosurfactant (isopropanol). Photo-polymerization of the oil phase in the parent microemulsion solutions resulted in polymeric solids, and subsequent removal of the extractable components yielded porous PDMS membranes. The pre-cured parent microemulsion solutions and post-cured polymers were characterized by small angle X-ray scattering (SAXS) while the nanostructures of extracted porous polymer membranes were characterized by SAXS, scanning electron microscopy (SEM) and mercury porosimetry. The results indicated that nano- and micro-structures of the membranes could be modulated by the water content of the precursor microemulsions. Further, in situ photo-rheometry was used to follow the microemulsion polymerization process. The rate of polymerization and the mechanical properties of the resulting PDMS membranes also depend on the water content of precursor microemulsions. This study demonstrates a simple approach to the fabrication of a variety of novel porous PDMS membranes with controllable morphology and porosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All solid-state organic ionic plastic crystal–polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10’s lms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) nanofiber mats prepared by an electrospinning technique were used as an active layer for making mechanical-to-electric energy conversion devices. The effects of PVDF concentration and electrospinning parameters (e.g. applied voltage, spinning distance), as well as nanofiber mat thickness on the fiber diameter, PVDF β crystal phase content, and mechanical-to-electrical energy conversion properties of the electrospun PVDF nanofiber mats were examined. It was interesting to find that finer uniform PVDF fibers showed higher β crystal phase content and hence, the energy harvesting devices had higher electrical outputs, regardless of changing the electrospinning parameters and PVDF concentration. The voltage output always changed in the same trend to the change of current output whatever the change trend was caused by the operating parameters or polymer concentration. Both voltage and current output changes followed a similar trend to the change of the β crystal phase content in the nanofibers. The nanofiber mat thickness influenced the device electrical output, and the maximum output was found on the 70 μm thick nanofiber mat. These results suggest that uniform PVDF nanofibers with smaller diameters and high β crystal phase content facilitate mechanical-to-electric energy conversion. The understanding obtained from this study may benefit the development of novel piezoelectric nanofibrous materials and devices for various energy uses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of polyvinylidene difluoride (PVDF) electrospun nanofibres within N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF4] was investigated with a view to fabricating self-standing membranes for various electrochemical device applications, in particular lithium metal batteries. Significant improvement in mechanical properties and ionic conduction was demonstrated in a previous study, which also demonstrated the remarkably high performance of the lithium-doped composite material in a device. We now seek a fundamental understanding of the role of fibres within the matrix of the plastic crystal, which is essential for optimizing device performance through fine-tuning of the composite material properties. The focus of the current study is therefore a thorough investigation of the phase behaviour and conduction behaviour of the pure and the lithium-doped (as LiBF4) plastic crystal, with and without incorporation of polymer nanofibres. Analysis of the structure of the plastic crystal, including the effects of lithium ions and the incorporation of PVDF fibres, was conducted by means of synchrotron XRD. Ion dynamics were evaluated using VT solid-state NMR spectroscopy. ATR-FTIR spectroscopy was employed to gain insights into the molecular interactions of doped lithium ions and/or the PVDF nanofibres in the matrix of the [C2mpyr][BF4] composites. Preliminary measurements using PALS were conducted to probe structural defects within the pure materials. It was found that ion transport within the plastic crystal was significantly altered by doping with lithium ions due to the precipitation of a second phase in the structure. The incorporation of the fibres activated more mobile sites in the systems, but restricted ion mobility with different trends being observed for each ion species in each crystalline phase. In the presence of the fibres a strong interaction observed between the Li ion and the pyrrolidinium ring disappeared and formation of the second phase was prevented. As a result, an increased number of mobile lithium ions are released into the solid solution structure of the matrix, simultaneously removing the blocking effect of the second phase. Thus, ion conduction was remarkably improved within the Li-doped composite compared to the neat Li-doped plastic crystal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium-based batteries are being considered to replace Li-based batteries for the fabrication of large-scale energy storage devices. One of the main obstacles is the lack of safe and conductive solid Na-ion electrolytes. A Na-ion polymer based on the (4-styrenesulfonyl(trifluromethylsulfonyl) imide anion, Na[STFSI], has been prepared by a radical polymerization process and its conductive properties determined. In addition, a number of multi-component polymers were synthetized by co-reaction of two monomers: Na[STFSI] and ethyl acrylate (EA) at different ratios. The structural and phase characterizations of the polymers were probed by various techniques (DSC, TGA, NMR, GPC, Raman, FTIR and Impedance spectroscopy). Comparative studies with blends of the homopolymers Na[PSTFSI] and poly(ethylacrylate) (PEA) have also been performed. The polymers are all thermally stable up to 300°C and the ionic conductivity of EA copolymers and EA blends are about 1-3 orders of magnitude higher than that of Na[PSTFSI]. The highest conductivity measured at 100°C was found for Na[PSTFSI-blend-5EA] at 7.9 × 10-9 S cm-1, despite being well below its Tg. Vibrational spectroscopy indicates interaction between Na+ and the EA carbonyl groups, with a concomitant decrease in the sulfonyl interaction, facilitating Na+ motion, as well as lowering Tg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose here a novel liquid dendrimer-based single ion conductor as a potential alternative to conventional molecular liquid solvent-salt solutions in rechargeable batteries, sensors and actuators. A specific change from ester (-COOR) to cyano (-CN) terminated peripheral groups in generation-one poly(propyl ether imine) (G1-PETIM)-lithium salt complexes results in a remarkable switchover from a high cation (tLi+ = 0.9 for -COOR) to a high anion (tPF6- = 0.8 for -CN) transference number. This observed switchover draws an interesting analogy with the concept of heterogeneous doping, applied successfully to account for similar changes in ionic conductivity arising out of dispersion of insulator particle inclusions in weak inorganic solid electrolytes. The change in peripheral group simultaneously affects the effective ionic conductivity, with the room temperature ionic conductivity of PETIM-CN (1.9 × 10-5 Ω-1 cm-1) being an order of magnitude higher than PETIM-COOR (1.9 × 10-6 Ω-1 cm-1). Notably, no significant changes are observed in the lithium mobility even following changes in viscosity due to the change in the peripheral group. Changes in the peripheral chemical functionality directly influence the anion mobility, being lower in PETIM-COOR than in PETIM-CN, which ultimately becomes the sole parameter controlling the effective transport and electrochemical properties of the dendrimer electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf2 ] anion with various concentrations of Na[NTf2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf2 ] salt (over 2 mol kg(-1) ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device.