90 resultados para MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 nanofibers (NFs) with different phases such as amorphous, anatase, mixed anatase?rutile, and rutile have been prepared by combining the electrospinning technique with the subsequent process of heat treatment or acidic-dissolution method. The obtained NFs are characterized by a Fourier transform infrared spectrometer (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption?desorption isotherm measurements. Phase structure effects of electrospun TiO2 NFs on As(III) adsorption behaviors have been investigated. The results showed a significant effect of the phase structures of TiO2 NFs on As(III) adsorption rates and capacities. Amorphous TiO2 NFs have the highest As(III) adsorption rate and capacity in the investigated samples, which can be attributed to its higher surface area and porous volume. This research provides a simple and low-cost method for phasecontrolled fabrication of TiO2 NFs and application for effective removal of arsenic from aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced treatment of secondary wastewater generally has been achieved using polymeric microfiltration and ultrafiltration membranes. Newly developed ceramic membranes offer distinctive advantages over the currently employed membranes and were recently introduced for the purpose. This paper presents results of a pilot study designed to investigate the application of ceramic microfiltration (MF) and ultrafiltration (UF) membranes in the recovery of water from secondary wastewater. Synthetic wastewater similar to the quality of secondary treated wastewater was fed to ceramic MF and UF system in a cross-flow mode. The filtration experiments revealed that the flux recovery through tubular ceramic MF membrane was more sensitive to the variation in TMP compared with the tubular ceramic UF membrane over the range of TMP studied. The resistance in series model was used for the evaluation of the resistance to the permeate flux. The results revealed that for ceramic UF membrane, the contribution to the total resistance of fouling was higher than the inherent of the clean membrane resistance. However, both the clean membrane resistance and the fouling resistance contribute equally in the case of MF membrane. Various wastewater indices were measured to evaluate the effectiveness of the filtration treatment. The ceramic UF membrane consistently met water quality in the permeate in terms of colour, turbidity, chemical oxygen demand and absorbance, suggesting that the permeate water could be made to be reused or recycled for suitable purposes. However, MF membrane appeared to be incompetent with respect to the removal of colour. The unified membrane fouling index (UMFI) was used to measure the fouling potential of both the membranes. The result showed that for UF membrane, the value of UMFI is one order of magnitude higher than MF membrane. The overall results suggest that there were significant differences in the performance of both the ceramic UF and MF membranes that are likely to impact on the operation and maintenance of the membrane system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose
To determine the prevalence of epiretinal membranes (ERMs) in Melbourne, Australia and its risk factors in this population.

Methods
The Melbourne Collaborative Cohort Study is a prospective study investigating the role of diet and life style in the causation of common chronic diseases. Eighty-six percent of participants were of Northern European origin born in Australia or United Kingdom and 14% were migrants from Greece or Italy (Southern European origin). Nonmydriatic digital retinal photography was implemented at Melbourne Collaborative Cohort Study follow-up. The ERMs were recorded as cellophane macular reflex without retinal folds or preretinal macular fibrosis (PMF) with retinal folds.

Results
A total of 22,406 participants had retinal photography, 95% (n = 21,241) were eligible for ERM grading. The ERM prevalence were 8.9% (1,882); cellophane macular reflex, 4.9% (1,047); and preretinal macular fibrosis, 3.9% (835). After adjustment for age, sex, level of education, smoking status, level of cholesterol, body mass index, waist-to-hip ratio, waist measurement, blood pressure, diabetes, and stroke, increasing age and Southern European ethnicity was significantly associated with ERMs. Overall, in Southern Europeans, ERMs odd ratio was 1.97 (95% confidence intervals, 1.67–2.31), P < 0.001; preretinal macular fibrosis was 1.82 (95% confidence intervals, 1.43–2.31), P < 0.001; and cellophane macular reflex was 1.93 (1.57–2.38), P < 0.001.

Conclusion

In an older Australian population, the prevalence of ERMs was 8.9% and was almost two times higher in participants of Southern European origin than Northern European origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, society has been increasingly concerned with bacteria that are no longer susceptible to commercial antibiotics. Faced with a lack of tools, medical practitioners today are forced to prescribe medicines that, although effective, cause as much harm to the patient as the principal infection. The purpose of this research project is to develop novel antibacterials that remain potent against bacterial infections without being toxic to the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 μM) palmitate oxidation was decreased by 95% (P < 0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P < 0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid composite membranes have great potential for desalination applications since water transport can be favorably promoted by selective diffusion at the interface between matrix and reinforcement materials. In this paper, graphene oxide nano-sheets were successfully incorporated across 200nm thick poly(amide) films by interfacial polymerization to form novel thin-film composite membranes. The impact of the graphene oxide on the morphology, chemistry, and surface charge of the ultra-thin poly(amide) layer, and the ability to desalinate seawater was investigated. The graphene oxide nano-sheets were found to be well dispersed across the composite membranes, leading to a lower membrane surface energy and an enhanced hydrophilicity. The iso-electric point of the samples, key to surface charge repulsion during desalination, was found to be consistently shifted to higher pH values with an increasing graphene oxide content. Compared to a pristine poly(amide) membrane, the pure water flux across the composite membranes with 0.12wt.% of graphene oxide was also found to increase by up to 80% from 0.122 to 0.219L·μm·m-2·h-1·bar-1 without significantly affecting salt selectivity. Furthermore, the inhibitory effects of the composite membrane on microbial growth were evaluated and the novel composite membranes exhibited superior anti-microbial activity and may act as a potential anti-fouling membrane material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240 μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2 μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240. μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2. μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.