71 resultados para IP routing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Location service provides location information of robots to sensors, to enable event reporting. Existing protocols apply partial flooding to trace robots, leading to poor scalability. We propose a novel scalable location service, which applies hierarchical rings to update robot location and guide routing toward it. Each mobile robot creates a set of hierarchical update rings of doubling radii. Whenever the robot leaves its k-th ring, it updates its new location to sensors along its newly defined k-th ring, and re-defines all smaller rings for future decisions. When a sensor needs to route to the mobile robot, it starts searching from its smallest ring and sends location query to the sensors along the ring. If the query fails, the search then extends to the next larger ring, until it intersects an existing update ring, from which the search can be directed towards reported center. The location of destination is updated whenever another more recent ring is intersected. Our scheme guarantees message delivery if robot remains connected to sensors during its move. The theoretical analysis and simulation results demonstrate better scalability than previous protocols for the similar goal. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicular Cyber-Physical System (VCPS) provides CPS services via exploring the sensing, computing and communication capabilities on vehicles. VCPS is deeply influenced by the performance of the underlying vehicular network with intermittent connections, which make existing routing solutions hardly to be applied directly. Epidemic routing, especially the one using random linear network coding, has been studied and proved as an efficient way in the consideration of delivery performance. Much pioneering work has tried to figure out how epidemic routing using network coding (ERNC) performs in VCPS, either by simulation or by analysis. However, none of them has been able to expose the potential of ERNC accurately. In this paper, we present a stochastic analytical framework to study the performance of ERNC in VCPS with intermittent connections. By novelly modeling ERNC in VCPS using a token-bucket model, our framework can provide a much more accurate results than any existing work on the unicast delivery performance analysis of ERNC in VCPS. The correctness of our analytical results has also been confirmed by our extensive simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless mesh networks are widely applied in many fields such as industrial controlling, environmental monitoring, and military operations. Network coding is promising technology that can improve the performance of wireless mesh networks. In particular, network coding is suitable for wireless mesh networks as the fixed backbone of wireless mesh is usually unlimited energy. However, coding collision is a severe problem affecting network performance. To avoid this, routing should be effectively designed with an optimum combination of coding opportunity and coding validity. In this paper, we propose a Connected Dominating Set (CDS)-based and Flow-oriented Coding-aware Routing (CFCR) mechanism to actively increase potential coding opportunities. Our work provides two major contributions. First, it effectively deals with the coding collision problem of flows by introducing the information conformation process, which effectively decreases the failure rate of decoding. Secondly, our routing process considers the benefit of CDS and flow coding simultaneously. Through formalized analysis of the routing parameters, CFCR can choose optimized routing with reliable transmission and small cost. Our evaluation shows CFCR has a lower packet loss ratio and higher throughput than existing methods, such as Adaptive Control of Packet Overhead in XOR Network Coding (ACPO), or Distributed Coding-Aware Routing (DCAR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DDoS attack source traceback is an open and challenging problem. Deterministic packet marking (DPM) is a simple and effective traceback mechanism, but the current DPM based traceback schemes are not practical due to their scalability constraint. We noticed a factor that only a limited number of computers and routers are involved in an attack session. Therefore, we only need to mark these involved nodes for traceback purpose, rather than marking every node of the Internet as the existing schemes doing. Based on this finding, we propose a novel marking on demand (MOD) traceback scheme based on the DPM mechanism. In order to traceback to involved attack source, what we need to do is to mark these involved ingress routers using the traditional DPM strategy. Similar to existing schemes, we require participated routers to install a traffic monitor. When a monitor notices a surge of suspicious network flows, it will request a unique mark from a globally shared MOD server, and mark the suspicious flows with the unique marks. At the same time, the MOD server records the information of the marks and their related requesting IP addresses. Once a DDoS attack is confirmed, the victim can obtain the attack sources by requesting the MOD server with the marks extracted from attack packets. Moreover, we use the marking space in a round-robin style, which essentially addresses the scalability problem of the existing DPM based traceback schemes. We establish a mathematical model for the proposed traceback scheme, and thoroughly analyze the system. Theoretical analysis and extensive real-world data experiments demonstrate that the proposed traceback method is feasible and effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bandwidth-delay constrained least-cost multicast routing is a typical NP-complete problem. Although some swarm-based intelligent algorithms (e.g., genetic algorithm (GA)) are proposed to solve this problem, the shortcomings of local search affect the computational effectiveness. Taking the ability of building a robust network of Physarum network model (PN), a new hybrid algorithm, Physarum network-based genetic algorithm (named as PNGA), is proposed in this paper. In PNGA, an updating strategy based on PN is used for improving the crossover operator of traditional GA, in which the same parts of parent chromosomes are reserved and the new offspring by the Physarum network model is generated. In order to estimate the effectiveness of our proposed optimized strategy, some typical genetic algorithms and the proposed PNGA are compared for solving multicast routing. The experiments show that PNGA has more efficient than original GA. More importantly, the PNGA is more robustness that is very important for solving the multicast routing problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hundreds or thousands of wireless sensor nodes with limited energy resource are randomly scattered in the observation fields to extract the data messages for users. Because their energy resource cannot be recharged, energy efficiency becomes one of the most important problems. LEACH is an energy efficient protocol by grouping nodes into clusters and using cluster heads (CH) to fuse data before transmitting to the base station (BS). BCDCP improves LEACH by introducing a minimal spanning tree (MST) to connect CHs and adopting iterative cluster splitting algorithm to choose CHs or form clusters. This paper proposes another innovative cluster-based routing protocol named dynamic minimal spanning tree routing protocol (DMSTRP), which improves BCDCP by introducing MSTs instead of clubs to connect nodes in clusters. Simulation results show that DMSTRP excels LEACH and BCDCP in terms of both network lifetime and delay when the network size becomes large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel Cluster Heads (CH) choosing algorithm based on both Minimal Spanning Tree and Maximum Energy resource on sensors, named MSTME, is provided for prolonging lifetime of wireless sensor networks. MSTME can satisfy three principles of optimal CHs: to have the most energy resource among sensors in local clusters, to group approximately the same number of closer sensors into clusters, and to distribute evenly in the networks in terms of location. Simulation shows the network lifetime in MSTME excels its counterparts in two-hop and multi-hop wireless sensor networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the conditions of the cluster-based routing protocols in terms of general algorithm complexity of data fusion, general compressing ratio of data fusion, and network area with long distance. Corresponding three general evaluation methods to evaluate the energy efficiency of the cluster-based routing protocols such as LEACH, PEGASIS, and BCDCP are provided. Moreover, three facts are found in them: (1) High-level software energy macro model is used to compute the energy dissipation of general data fusion software and make the constant value of energy dissipation of 1-bit data fusion an especial instance. (2) Multi-hop energy efficiency is related to the radio hardware parameters and the dynamic topology of network and the above protocols do not exploit the best use of the energy efficiency of multi-hop scheme. (3) High-energy dissipation non-cluster-head nodes, whose number changes with the density of the sensor nodes in clusters, worsen the death of nodes. The numerical results of experiments reprove these discoveries. Furthermore, they provide helpful guide for improving the above routing protocols to extent their application ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expected pervasive use of mobile cloud computing and the growing number of Internet data centers have brought forth many concerns, such as, energy costs and energy saving management of both data centers and mobile connections. Therefore, the need for adaptive and distributed resource allocation schedulers for minimizing the communication-plus-computing energy consumption has become increasingly important. In this paper, we propose and test an efficient dynamic resource provisioning scheduler that jointly minimizes computation and communication energy consumption, while guaranteeing user Quality of Service (QoS) constraints. We evaluate the performance of the proposed dynamic resource provisioning algorithm with respect to the execution time, goodput and bandwidth usage and compare the performance of the proposed scheduler against the exiting approaches. The attained experimental results show that the proposed dynamic resource provisioning algorithm achieves much higher energy-saving than the traditional schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mobile ad hoc network is a kind of popular self-configuring network, in which multicast routing under the quality of service constraints, is a significant challenge. Many researchers have proved that such problem can be formulated as a NP-complete problem and proposed some swarm-based intelligent algorithms to solve the optimal solution, such as the genetic algorithm (GA), bees algorithm. However, a lower efficiency of local search ability and weak robustness still limit the computational effectiveness. Aiming to those shortcomings, a new hybrid algorithm inspired by the self-organization of Physarum, is proposed in this paper. In our algorithm, an updating scheme based on Physarum network model (PM) is used for improving the crossover operator of traditional GAs, in which the same parts of parent chromosomes are reserved and the new offspring by the PM is generated. In order to estimate the effectiveness of our proposed optimized scheme, some typical genetic algorithms and their updating algorithms (PMGAs) are compared for solving the multicast routing on four different datasets. The simulation experiments show that PMGAs are more efficient than original GAs. More importantly, the PMGAs are more robustness that is very important for solving the multicast routing problem. Moreover, a series of parameter analyses is used to find a set of better setting for realizing the maximal efficiency of our algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the satellite network plays an irreplaceable role in many fields, how to interconnect it with the ground network has received an unprecedented attention. However, with much more requirements imposed to the current terrestrial network, many serious problems caused by the IP dual-role exposed. In this context, their direct interconnection seems not the most appropriate way. Thus, in this paper, SAT-GRD, an incrementally deployable ID/Loc split network architecture is proposed, aiming to integrate the satellite and ground networks efficiently. Specifically, SAT-GRD separates the identity of both the host and network from the location. Then, it isolates the host from the network, and further divides the whole network into core and edge networks. These make SAT-GRD much more flexible and scalable to achieve heterogeneous network convergence and avoid problems resulting from the overloaded semantics of IP addresses. In addition, much work has been done to implement the proof-of-concept prototype of SAT-GRD, and experimental results prove its feasibility.