66 resultados para Hidden, Samuel.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In neuroscience, the extracellular actions potentials of neurons are the most important signals, which are called spikes. However, a single extracellular electrode can capture spikes from more than one neuron. Spike sorting is an important task to diagnose various neural activities. The more we can understand neurons the more we can cure more neural diseases. The process of sorting these spikes is typically made in some steps which are detection, feature extraction and clustering. In this paper we propose to use the Mel-frequency cepstral coefficients (MFCC) to extract spike features associated with Hidden Markov model (HMM) in the clustering step. Our results show that using MFCC features can differentiate between spikes more clearly than the other feature extraction methods, and also using HMM as a clustering algorithm also yields a better sorting accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that the uncertainty noise produced the decline in the quality of collected neural signal, this paper proposes a signal quality assessment method for neural signal. The method makes an automated measure to detect the noise levels in neural signal. Hidden Markov Models were used to build a classification model that classifies the neural spikes based on the noise level associated with the signal. This neural quality assessment measure will help doctors and researchers to focus on the patterns in the signal that have high signal to noise ratio and carry more information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hidden patterns and contexts play an important part in intelligent pervasive systems. Most of the existing works have focused on simple forms of contexts derived directly from raw signals. High-level constructs and patterns have been largely neglected or remained under-explored in pervasive computing, mainly due to the growing complexity over time and the lack of efficient principal methods to extract them. Traditional parametric modeling approaches from machine learning find it difficult to discover new, unseen patterns and contexts arising from continuous growth of data streams due to its practice of training-then-prediction paradigm. In this work, we propose to apply Bayesian nonparametric models as a systematic and rigorous paradigm to continuously learn hidden patterns and contexts from raw social signals to provide basic building blocks for context-aware applications. Bayesian nonparametric models allow the model complexity to grow with data, fitting naturally to several problems encountered in pervasive computing. Under this framework, we use nonparametric prior distributions to model the data generative process, which helps towards learning the number of latent patterns automatically, adapting to changes in data and discovering never-seen-before patterns, contexts and activities. The proposed methods are agnostic to data types, however our work shall demonstrate to two types of signals: accelerometer activity data and Bluetooth proximal data. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a Digital Performing Agent to be able to perform live with a human dancer, it would be useful for the agent to be able to contextualize the movement the dancer is performing and to have a suitable movement vocabulary with which to contribute to the performance. In this paper we will discuss our research into the use of Artificial Neural Networks (ANN) as a means of allowing a software agent to learn a shared vocabulary of movement from a dancer. The agent is able to use the learnt movements to form an internal representation of what the dancer is performing, allowing it to follow the dancer, generate movement sequences based on the dancer's current movement and dance independently of the dancer using a shared movement vocabulary. By combining the ANN with a Hidden Markov Model (HMM) the agent is able to recognize short full body movement phrases and respond when the dancer performs these phrases. We consider the relationship between the dancer and agent as a means of supporting the agent's learning and performance, rather than developing the agent's capability in a self-contained fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an approach to cancer classification through gene expression profiles by designing supervised learning hidden Markov models (HMMs). Gene expression of each tumor type is modelled by an HMM, which maximizes the likelihood of the data. Prominent discriminant genes are selected by a novel method based on a modification of the analytic hierarchy process (AHP). Unlike conventional AHP, the modified AHP allows to process quantitative factors that are ranking outcomes of individual gene selection methods including t-test, entropy, receiver operating characteristic curve, Wilcoxon test and signal to noise ratio. The modified AHP aggregates ranking results of individual gene selection methods to form stable and robust gene subsets. Experimental results demonstrate the performance dominance of the HMM approach against six comparable classifiers. Results also show that gene subsets generated by modified AHP lead to greater accuracy and stability compared to competing gene selection methods, i.e. information gain, symmetrical uncertainty, Bhattacharyya distance, and ReliefF. The modified AHP improves the classification performance not only of the HMM but also of all other classifiers. Accordingly, the proposed combination between the modified AHP and HMM is a powerful tool for cancer classification and useful as a real clinical decision support system for medical practitioners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EEG signal is one of the most important signals for diagnosing some diseases. EEG is always recorded with an amount of noise, the more noise is recorded the less quality is the EEG signal. The included noise can represent the quality of the recorded EEG signal, this paper proposes a signal quality assessment method for EEG signal. The method generates an automated measure to detect the noise level of the recorded EEG signal. Mel-Frequency Cepstrum Coefficient is used to represent the signals. Hidden Markov Models were used to build a classification model that classifies the EEG signals based on the noise level associated with the signal. This EEG quality assessment measure will help doctors and researchers to focus on the patterns in the signal that have high signal to noise ratio and carry more information. Moreover, our model was applied on an uncontrolled environment and on controlled environment and a result comparison was applied.