110 resultados para GFRP reinforcement


Relevância:

10.00% 10.00%

Publicador:

Resumo:

MgAl2O4 (spinel) is considered as a commercially important ceramic reinforcement in MMC fabrication because of the possible tailorable properties imparted with Al for many applications. Generally, any oxygen source, i.e., the dissolved oxygen, or pure oxygen atmosphere or atmospheric oxygen is sufficient for the formation of MgAl2O4 in Al–Mg alloy. Among all the reactive oxygen sources, the reactivity of SiO2 with Al alloy is found to be higher. Amorphous silica is highly reactive in nature compared to crystalline silica. The present study has examined the thermodynamics of MgAl2O4 formation in Al–Mg alloy by amorphous silica sources with the aid of differential thermal analyzer (DTA) and the simulated experiments. The dissolution of Si and the formation of MgAl2O4 are detected as the endothermic peak and the immediate exothermic peak respectively in DTA curves and the presence of MgAl2O4 is confirmed by the XRD of the simulated sample. The MgO formed due to the oxidation of Mg in Al–Mg alloy has been found to influence the MgAl2O4 formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibitor concentration depth profiles for concrete samples treated with a proprietary migratory corrosion inhibitor (of the Cortec MCI range) are presented. The treated concrete was cored and these cores were then sectioned and crushed before being immersed in distilled water to extract the available inhibitor. The amine concentrations were quantified using an ammonium-sensing electrode and were then related to the inhibitor concentration present. The inhibitor examined, reported to contain a combination of volatile amines and amino carboxylate compounds, was found to readily diffuse through concrete. The inhibitor was subjected to a 5-year trial and found to be effective in suppressing corrosion of steel reinforcement in the presence of high chloride concentrations. The concentration profiles indicate that only relatively low concentrations of inhibitor were required to achieve inhibition in this case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research investigated the problem of path planning in complex conveyor networks. A reinforcement learning approach was applied to derive a control strategy for routing traffic. The derived strategy was verified in real world systems and was found to improve network performance by prioritising traffic flows and balancing network load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is a compilation of eighty publications on analytical, experimental and numerical studies on the mechanical, tribological and corrosion behaviour of metal matrix composites (MMCs). The models based on the interface between matrix and reinforcement behaviour help accurate prediction of density and locked up hysterysis-strain in the composites at elevated temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionalization of multi-walled carbon nanotubes (MWCNTs) plays an important role in eliminating nanotube aggregation for reinforcing polymeric materials. We prepared a new class of natural rubber (NR)/MWCNT composites by using latex compounding and self-assembly technique. The MWCNTs were functionalized with mixed acids (H2SO4/HNO3 = 3:1, volume ratio) and then assembled with poly (diallyldimethylammonium chloride) and latex particles. The Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy were used to investigate the assembling mechanism between latex particles and MWCNTs. It is found that MWCNTs are homogenously dispersed in the natural rubber (NR) latex as individual nanotubes since strong self-aggregation of MWCNTs has been greatly depressed with their surface functionalization. The well-dispersed MWCNTs produce a remarkable increase in the tensile strength of NR even when the amount of MWCNTs is only 1 wt.%. Dynamic mechanical analysis shows that the glass transition temperature of composites is higher and the inner-thermogenesis and thermal stability of NR/MWCNT composites are better, when compared to those of the pure NR. The marked improvement in these properties is largely due to the strong interfacial adhesion between the NR phase and MWCNTs. Functionalization of MWCNTs represents a potentially powerful technology for significant reinforcement of natural rubber materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic media (EM) (television, electronic games and computer) use has been associated with overweight and obesity among children. Little is known about the time spent in sedentary behaviour (SB) among children within the family context. The aim of this study was to explore how the family home environment may influence children's electronic-based SB. Focus groups and family interviews were conducted with 11- to 12-year old children (n = 54) and their parents (n = 38) using a semi-structured discussion guide. Transcripts were analysed using a thematic content approach. A brief self-completed questionnaire was also used to measure leisure behaviour and electronic devices at home. Children incorporated both sedentary and physical activities into their weekly routine. Factors influencing children's EM use included parent and sibling modelling and reinforcement, personal cognitions, the physical home environment and household EM use rules and restrictions. Participants were not concerned about the excessive time children spent with EM. This under-recognition emerged as a personal influencing factor and was viewed as a major barrier to modifying children's electronic-based SB. Efforts to reduce SB in children should focus on the influencing factors that reciprocally interact within the family home. An emphasis on increasing awareness about the risks associated with spending excessive time in screen-based activities should be a priority when developing intervention strategies aimed at modifying the time children spend in SB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silk fibroin is a useful protein polymer for biomaterials and tissue engineering. In this work, porogen leached scaffolds prepared from aqueous and HFIP silk solutions were reinforced through the addition of silk particles. This led to about 40 times increase in the specific compressive modulus and the yield strength of HFIP-based scaffolds. This increase in mechanical properties resulted from the high interfacial cohesion between the silk matrix and the reinforcing silk particles, due to partial solubility of the silk particles in HFIP. The porosity of scaffolds was reduced from ≈90% (control) to ≈75% for the HFIP systems containing 200% particle reinforcement, while maintaining pore interconnectivity. The presence of the particles slowed the enzymatic degradation of silk scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical predictions suggest that species-specific signals used in the attraction of mates should evolve to reduce the risk of mismating and hybridization. These predictions lead to the hypothesis that the signals of spatially overlapping (i.e. sympatric or syntopic) species should differ more substantially than those of non-overlapping species. Earlier studies have tested this prediction for auditory and visual signals. Here we test the hypothesis using olfactory signals, specifically the aggregation pheromones of species from two genera of bark beetles, Dendroctonus and Ips. We found no direct evidence from within these genera regarding the fact that the chemical blends that make up these pheromones differ more substantially in species that overlap in their geographical ranges and/or host-tree use than in allopatric taxa. However, when comparing between genera, the pheromones of overlapping species appear to be more similar than non-overlapping species. We hypothesize that the species of host tree utilized by the beetles may have some influence on their pheromone blends. Additionally, within genera, species that overlap in host use tend to be more closely related than species that use different hosts. These results may provide indirect evidence for an effect of species overlap on the evolution of bark beetle pheromones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spectral element model updating procedure is presented to identify damage in a structure using Guided wave propagation results. Two damage spectral elements (DSE1 and DSE2) are developed to model the local (cracks in reinforcement bar) and global (debonding between reinforcement bar and concrete) damage in one-dimensional homogeneous and composite waveguide, respectively. Transfer matrix method is adopted to assemble the stiffness matrix of multiple spectral elements. In order to solve the inverse problem, clonal selection algorithm is used for the optimization calculations. Two displacement-based functions and two frequency-based functions are used as objective functions in this study. Numerical simulations of wave propagation in a bare steel bar and in a reinforcement bar without and with various assumed damage scenarios are carried out. Numerically simulated data are then used to identify local and global damage of the steel rebar and the concrete-steel interface using the proposed method. Results show that local damage is easy to be identified by using any considered objective function with the proposed method while only using the wavelet energy-based objective function gives reliable identification of global damage. The method is then extended to identify multiple damages in a structure. To further verify the proposed method, experiments of wave propagation in a rectangular steel bar before and after damage are conducted. The proposed method is used to update the structural model for damage identification. The results demonstrate the capability of the proposed method in identifying cracks in steel bars based on measured wave propagation data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation and uniform dispersion of carbon nanotubes (CNTs) in polymer matrix could facilitate engineers to create high performance nanocomposites that potentially compete with most advanced materials in nature. The unique combination of outstanding mechanical, thermal, and electrical properties of CNTs makes them excellent nanofillers for the fabrication of advanced materials. Successful enhancement in mechanical properties via reinforcement is expected only when the nanofillers are well dispersed in the polymer matrix. Moreover, the orientation as well as the CNT/matrix interfacial strength also determines the effective physical properties of the nanocomposites. However, CNTs typically assemble to give bundles, which are heavily entangled to each other with a high aspect ratio and a large π-electronic surface. In this work, we outline some preliminary results in preparing high performance epoxy composites. Composites with fine dispersion and superior mechanical properties were prepared using epoxy and multiwalled carbon nanotubes (MWCNTs). The fine dispersion of the nanocomposites can be identified in the high resolution SEM image shown in Figure 1. This method can provide an alternative route for the preparation of new structural and functional nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Individual, home social and physical environment correlates of electronic media (EM) use among children were examined and pattern of differences on school and weekend days.
Methods: Youth (n = 298) aged 11 to 12 years self-reported time spent using EM (TV, video/DVD, computer use, and electronic games) on a typical school and a weekend day, each dichotomized at the median to indicate heavy and light EM users. Anthropometric measurements were taken. Logistic regression examined correlates of EM use.
Results: In total, 87% of participants exceeded electronic media use recommendations of ≤ 2 hrs/day. Watching TV during breakfast (OR = 3.17) and after school (OR = 2.07), watching TV with mother (OR = 1.96), no rule(s) limiting time for computer game usage (OR = 2.30), having multiple (OR = 2.99) EM devices in the bedroom and BMI (OR = 1.15) were associated with higher odds of being heavy EM user on a school day. Boys (OR = 2.35) and participants who usually watched TV at midday (OR = 2.91) and late at night (OR = 2.04) had higher odds of being a heavy EM user on the weekend.
Conclusions:
Efforts to modify children’s EM use should focus on a mix of intervention strategies that address patterns and reinforcement of TV viewing, household rules limiting screen time, and the presence of EM devices in the child’s bedroom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. Although the family environment is a potentially important influence on children's physical activity (PA), prospective data investigating these associations are lacking. This study aimed to examine the longitudinal relationship between the family environment and PA among youth.

Design. A 5-year prospective cohort study.

Setting. Nineteen randomly selected public schools in Melbourne, Australia.

Subjects. Families of 5- to 6-year-old (n  =  190) and 10- to 12-year-old (n  =  350) children.

Measures. In 2001, parents reported their participation in PA, family-based PA, and support and reinforcement for their child's PA. In 2001, 2004, and 2006, moderate to vigorous intensity PA (MVPA) was assessed among youth using accelerometers. Weekend and “critical window” (after school until 6:00 p.m.) MVPA were examined because we hypothesized that the family environment would most likely influence these behaviors.

Analysis. Generalized estimating equations predicted average change in MVPA over 5 years from baseline family environment factors.

Results. Maternal role modeling was positively associated with boys' critical window and weekend (younger boys) MVPA. Paternal reinforcement of PA was positively associated with critical window and weekend MVPA among all boys, and paternal direct support was positively associated with weekend MVPA (older boys). Among girls, maternal coparticipation in PA predicted critical window MVPA, and sibling coparticipation in PA was directly associated with weekend MVPA (younger girls).

Conclusions. Longitudinal relationships, although weak in magnitude, were observed between the family environment and MVPA among youth. Interventions promoting maternal role modeling, paternal reinforcement of and support for PA, and maternal and sibling coparticipation in PA with youth are warranted.