68 resultados para Fiber reinforced materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the relationships between the sensations of sweaty, damp, muggy and clingy, as assessed by human response from wearer trial garment assessment, and fiber type, fiber, yarn and fabric properties and instrumental fabric measurements of next-to-skin knitwear. Wearer trial assessment of 48 fabrics followed a strict 60 minute protocol including a range of environmental conditions and levels of exercise. Adjusted mean weighted scores were determined using linked garments. Instrumental fabric handle measurements were determined with the Wool HandleMeter (WHM) and Wool ComfortMeter. Data were analyzed using forward stepwise general linear modeling. Mean fiber diameter (MFD) affected the sweaty, damp, muggy and clingy sensation responses accounting for between 23.5% and 56.2% of the variance of these sensations. In all cases, finer fibers were associated with lower sensation scores (preferred). There were also effects of fiber type upon sweaty, muggy and clingy scores, with polyester fiber fabrics having higher scores (less preferred) compared with fabrics composed of wool, particularly for peak sweaty scores in hot and active environments. Attributes such as fabric density, yarn linear density, knitting structure and finishing treatments, but not fabric thickness, accounted for some further variance in these attributes once MFD had been taken into account. This is explained as finer fibers have a greater surface area for any given mass of fiber and so finer fibers can act as a more effective sink for moisture compared with coarser fibers. No fabric handle parameter or other attribute of fiber diameter distribution was significant in affecting these sensation scores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel fibrous conduit consisting of well-aligned nanofibers with longitudinal nanogrooves on the fiber surface was prepared by electrospinning and was subjected to an in vivo nerve regeneration study on rats using a sciatic nerve injury model. For comparison, a fibrous conduit having a similar fiber alignment structure without surface groove and an autograft were also conducted in the same test. The electrophysiological, walking track, gastrocnemius muscle, triple-immunofluorescence, and immunohistological analyses indicated that grooved fibers effectively improved sciatic nerve regeneration. This is mainly attributed to the highly ordered secondary structure formed by surface grooves and an increase in the specific surface area. Fibrous conduits made of longitudinally aligned nanofibers with longitudinal nanogrooves on the fiber surface may offer a new nerve guidance conduit for peripheral nerve repair and regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shift towards strong and lightweight fibre reinforced polymer-matrix composites for many high performance applications has resulted in an increasing need to expose students to composite design and manufacture courses in the undergraduate curriculum. In contrast, student exposure to composite materials is often still limited to a topic within a materials or manufacturing related course (unit). This paper presents the initial offering of a composite materials elective at Griffith University in Australia. The course also addresses environmental concerns through the inclusion of natural fibre composites. An evaluation of student perceptions is considered from Griffith’s Student Experience of Course (SEC) and separate Student Experience of Teaching (SET) surveys. These evaluations demonstrate the high level of student engagement with the course, but also highlighted areas for improvement, including the need to incorporate even more hands-on practical work. Interestingly, the inclusion of natural fibre composites and the related discussion surrounding environmental and societal issues are not focused on in student feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospun polyvinylidene fluoride (PVDF) nanofiber webs have shown great potential in making mechanical-to-electrical energy conversion devices. Previously, polyvinylidene fluoride (PVDF) nanofibers were produced either using near-field electrospinning (spinning distance < 1 cm) or conventional electrospinning (spinning distance > 8 cm). PVDF fibers produced by an electrospinning at a spinning distance between 1 and 8 cm (referred to as "short-distance" electrospinning in this paper) has received little attention. In this study, we have found that PVDF electrospun in such a distance range can still be fibers, although interfiber connection is formed throughout the web. The interconnected PVDF fibers can have a comparable β crystal phase content and mechanical-to-electrical energy conversion property to those produced by conventional electrospinning. However, the interfiber connection was found to considerably stabilize the fibrous structure during repeated compression and decompression for electrical conversion. More interestingly, the short-distance electrospun PVDF fiber webs have higher delamination resistance and tensile strength than those of PVDF nanofiber webs produced by conventional electrospinning. Short-distance electrospun PVDF nanofibers could be more suitable for the development of robust energy harvesters than conventionally electrospun PVDF nanofibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of polyvinylidene difluoride (PVDF) electrospun nanofibres within N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF4] was investigated with a view to fabricating self-standing membranes for various electrochemical device applications, in particular lithium metal batteries. Significant improvement in mechanical properties and ionic conduction was demonstrated in a previous study, which also demonstrated the remarkably high performance of the lithium-doped composite material in a device. We now seek a fundamental understanding of the role of fibres within the matrix of the plastic crystal, which is essential for optimizing device performance through fine-tuning of the composite material properties. The focus of the current study is therefore a thorough investigation of the phase behaviour and conduction behaviour of the pure and the lithium-doped (as LiBF4) plastic crystal, with and without incorporation of polymer nanofibres. Analysis of the structure of the plastic crystal, including the effects of lithium ions and the incorporation of PVDF fibres, was conducted by means of synchrotron XRD. Ion dynamics were evaluated using VT solid-state NMR spectroscopy. ATR-FTIR spectroscopy was employed to gain insights into the molecular interactions of doped lithium ions and/or the PVDF nanofibres in the matrix of the [C2mpyr][BF4] composites. Preliminary measurements using PALS were conducted to probe structural defects within the pure materials. It was found that ion transport within the plastic crystal was significantly altered by doping with lithium ions due to the precipitation of a second phase in the structure. The incorporation of the fibres activated more mobile sites in the systems, but restricted ion mobility with different trends being observed for each ion species in each crystalline phase. In the presence of the fibres a strong interaction observed between the Li ion and the pyrrolidinium ring disappeared and formation of the second phase was prevented. As a result, an increased number of mobile lithium ions are released into the solid solution structure of the matrix, simultaneously removing the blocking effect of the second phase. Thus, ion conduction was remarkably improved within the Li-doped composite compared to the neat Li-doped plastic crystal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate that an amphiphilic block copolymer such as polyethylene glycol-b-polyethylene can be used as both dispersing and interfacial compatibilizing agent for the melt compounding of LLDPE with cellulose nano-fibers. A simple and effective spray drying methodology was first used for the first time for the preparation of a powdered cellulose nano-fibers extrusion feedstock. Surface adsorption of the amphiphilic PEG-b-PE was carried out directly in solution during this process. These various dry cellulosic feedstock were subsequently combined with LLDPE via extrusion to produce a range of nano-composites. The collective outcomes of this research are several folds. Firstly we show that presence of surface adsorbed PEG-b-PE effectively hindered the aggregation of the cellulose nano-fibers during the extrusion, affording clear homogenous materials with minimum aggregation even at the highest loading of cellulose nano-fibers (∼23 vol.%). Secondly, the tailored LLDPE/cellulose interface arising from intra- and inter-molecular hydrogen and Van der Waals bonds yielded significant levels of mechanical improvements in terms of storage and tensile modulus. We believe this study provides a simple technological template to produce high quality and performant polyolefins cellulose-based nano-composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Boron nitride nanotube reinforcement at titanium matrix composite increased the strength of the composite both at room and high temperature. At higher sintering temperature, nanotube reacts with titanium first forming TiB2 transition phase at the interface and then in-situ formed TiB phases in the matrix, which is also responsible for enhanced mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The size of reinforced particles notably affects the electro-discharge machining (EDM) of metal matrix composites (MMCs). This paper explores the mechanism of wire EDM of MMCs with different sizes of reinforced particles as well as the corresponding unreinforced matrix material. The mechanisms of material removal, surface generation, and taper kerf formation were investigated. This study shows that the particles’ ability to protect matrix materials from the intense heat of electric arc controls the material removal rate, surface generation, and taper of kerf. The low melting point matrix material is removed very easily, but the heat resistance reinforced particles delay the removal of material and facilitate the transfer of the workpiece material to wire electrode and vice versa. Thus, the material stays longer in touch with intense heat and affects the surface generation, wire electrode wear, and width of the kerf.