65 resultados para Dyes and dyeing.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photochromic fibers and fabrics can change color in response to light radiation. They represent a smart textile having attracted much attention recently and showing potential applications in diverse areas. This review chapter gives an overview of the state-of-the-art techniques for the preparation of photochromic fibers and fabrics. The properties and applications of photochromic fabrics are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in situ polymerization strategy was used to functionalize graphene oxide (GO) with poly(N,N-dimethyl amino ethylmethacrylate) (PDMAEMA) for the selective removal of anionic dyes. Various characterization methods demonstrate that PDMAEMA-grafted GO (GO-PDMAEMA) was successfully synthesized, and the high PDMAEMA content of 68.5% in GO-PDMAEMA changed the zeta potential significantly from -36.5 (GO) to 41.5 (GO-PDMAEMA). This change in the charge of GO-PDMAEMA greatly increased the adsorption capacities for anionic dye orange G (OG) compared to the pristine GO. The maximum adsorption capacity for anionic OG dye based on the Langmuir model is 609.8 mg g-1. The adsorption mechanism is believed to be a consecutive process of intra-particle diffusion and surface adsorption, with electrostatic interactions as the key driving force. The GO-PDMAEMA nanocomposite also showed excellent regeneration capacity and selectivity towards the separation of various anionic dyes (i.e. OG, Eosin yellow and Congo red) from an aqueous dye mixture. In conclusion, our method offers a promising strategy for developing new anionic dye adsorbents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the photocatalytic decolorization and mineralization of Remazol Black B (RBB), an azo reactive dye, in aqueous solutions was investigated using UV/H2O2/ZnO, UV/H2O2/TiO2 and UV/H2O2/ZnO:TiO2 systems. ZnO and TiO2 nanoparticles were loaded on 3-dimensional polyethylene terephthalate fabrics (spacer fabrics). Morphology of the spacer fabrics and the presence of the nanoparticles were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. Furthermore, the effects of key operational parameters on the efficiency of the decolorization were investigated. These parameters included initial pH value, initial hydrogen peroxide concentration, initial dye concentration, the loaded nanoparticle ratio and the presence of anions (sulfate, chloride and bicarbonate). Zero-, first- and second-order reaction kinetics were evaluated. Complete decolorization and high efficient mineralization with 90% total organic carbon (TOC) reduction were achieved at 120min treatment in the case of ZnO:TiO2 under optimum condition. The results proved that the novel heterogeneous photocatalytic process is capable of decolorizing and mineralizing azo reactive dyes in textile wastewater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safflower is one of the oldest cultivated crops, usually grown at a small scale. Safflower is grown for flowers used for coloring, flavoring foods, dyes, medicinal properties, and livestock feed. Safflower is underutilized but gaining attention due to oil yield potential and the ability to grow under high temperatures, drought, and salinity. Salinity and drought have negative effects by disrupting the ionic and osmotic equilibrium of the plant cells. The stress signal is perceived by membranes then transduced in the cell to switch on the stress responsive genes. This review discusses on stress tolerance mechanisms in safflower. Strategies are proposed for enhancing drought and salt resistance in safflower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project develops a novel photocatalyst for the cleaning of textile dyeing wastewater. The newly-developed photocatalyst was prepared by combing porous boron nitride nanosheets with titanium dioxide particles and these composites show potentials for the practical treatment of the textile dyeing wastewater in a large scale.