122 resultados para DUCTILITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of Si and Mn contents on microstructure, mechanical properties and formability of low carbon Si-Mn steels were studied, and the crack propagation of ferrite/bainite dual-phase steel was also investigated. The results showed that the increase in Si content increases the volume fraction of equiaxed ferrite. However, the increase in Mn content increases both strength and ductility, but decreases elongation and hole-expanding ratio. The crack of ferrite/bainite dual-phase steel is formed by the mode of microvoid coalescence. When a microcrack meets the bainite, it mostly propagates along the phase interface between ferrite and bainite and by cutting off ferrite grains. The hot-rolled ferrite/bainite dual-phase steel, which has a hole-expanding ratio of 95% and good property combination, could be produced by designing proper contents of Si and Mn as well as parameters of TMCP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on n-value differential equation and microstructural observation, strain hardening behaviors of FBDP, TRIP, and TWIP steels during uniaxial tension were investigated. TRIP steel exhibits both superior strength and ductility than FBDP steel, and TWIP steel displays much higher total and uniform elongations in comparison to FBDP and TRIP steels. The instantaneous n values of FBDP and TRIP steels increase at small strains, reach a maximum value, smoothly decrease at higher strains, and then rapidly drop up to the specimen rupture. The strain hardening of TRIP steel persists at higher strains where that of FBDP steel begins to diminish. TWIP steel exhibits gradually increased instantaneous n values over the whole uniform plastic deformation, implying that TWIP steel shows a much larger strain hardening capability than FBDP and TRIP steels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the thermo-mechanical controlled process, the effects of Si on microstructural evolution, tensile properties, impact toughness, and stretch-flangeability of ferrite and bainite dual-phase (FBDP) steels were systematically investigated. The addition of Si from 0 to 0.95% promoted the formation of fine and equiaxed ferrite grains, and high Si (0.95%) also resulted in the formation of blocky martensite islands and retained austenite. Yield and tensile strengths, and uniform and total elongations all increased with increasing Si content. Therefore, the tensile strength and ductility balance was improved by Si addition due to the increasing strain-hardening rate. The fractured morphologies after hole-expansion showed that the excellent stretch-flangeability of FBDP steels was associated with the micro-cracks propagating through in ferrite phase as well as the elongated ferrite grains along the direction perpendicular to the crack. 0.95% Si steel had a similar high combination of tensile strength and impact toughness to 0.55% Si steel, and especially 0.95% Si steel exhibited an excellent combination of tensile strength and stretch-flangeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiscale modelling of stress and strain partitioning in DP steel was carried out using both realistic microstructure-based RVE models as well as stochastic microstructures generated by Monte Carlo method. The stochastic microstructure models were shown to resemble that of realistic microstructures, enabling research on the specific aspects of the microstructure that could be difficult to control and study during experimental work. One such feature of the realistic microstructures studied in this work was the grain size and microstructure morphology. The microstructures were generated with varying average grain sizes while all other parameters, such as boundary conditions, material properties and volume fractions of martensite and ferrite were kept constant. It is found that the effect of grain size is much more pronounced during the initial localisation of the plastic deformation at and around the interface of the phases. In addition, the decrease in ductility and increase in strength of the DP steels are directly related to the refinement of grain sizes of each phase and the stress-strain partitioning in between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roll forming of ultra-high strength steels (UHSS) and other high strength alloys is an advanced manufacturing methodology with the ability of cold forming those materials to complex three-dimensional shapes for lightweight structural applications. Due to their high strength, most of these materials have a reduced ductility which excludes conventional sheet forming methods under cold forming conditions. Roll forming is possible due to its low strains and incremental forming characteristic. Recent research investigates the development of high strength nano-structured aluminum sheet and titanium alloys, as well as their behaviour in roll forming with regard to formability, material behaviour and shape defects. The development of new materials is often limited to small scale samples due to the high preparation costs. In contrast, industrial application needs larger scale tests for validation, especially in roll forming where a minimum sheet length is required to feed the sample trough the roll forming machine. This work describes a novel technique for studying roll forming of a short length of experimental material. DP780 steel strips (500mm – 1300mm length) were welded between two mild steel carrier sheets of similar width and thickness giving an overall strip length of 2m. Roll forming trials were performed and longitudinal edge strain, bow and springback determined on the welded samples and samples formed of full length DP780 strip before and after cut off. The experimental results of this work show that this method gives a reasonable approach for predicting material behavior in roll forming transverse to the rolling direction. In contrast to that significant differences in longitudinal bow were observed between the welded sections and the sections formed of full length DP780 strip; this indicates that the applicability of this method is limited with regard to predicting longitudinal material behavior in roll forming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in the development of new high strength steels have resulted in microstructures containing significant volume fractions of retained austenite. The transformation of retained austenite to martensite upon straining contributes towards improving the ductility. However, in order to gain from the above beneficial effect, the volume fraction, size, morphology and distribution of the retained austenite need to be controlled. In this regard, it is well known that carbon concentration in the retained austenite is responsible for its chemical stability, whereas its size and morphology determines its mechanical stability. Thus, to achieve the required mechanical properties, control of the processing parameters affecting the microstructure development is essential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there is a significant effort into developing novel multiphase microstructures to further improve the strength/ductility combination of advanced high-strength steels. To achieve this, the effect of the microstructure on sheet formability needs to be further understood. In this study, the effect of the microstructure on the variation of the elastic modulus in loading and unloading of DP 780 steel has been investigated. Five microstructures with varying volume fractions of ferrite and martensite were generated using different heat treatment cycles. Tension tests were performed to different strain values and the Young’s Modulus during loading and unloading was determined. The test results show that the reduction in unloading modulus with prestrain depends on the volume fraction and hardness of the martensitic phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesium-zinc alloys with and without rare earth metals were examined. Particles form when rare earth metals are present and these affect the development of the internal structures in the alloys. Finer, more numerous and more uniformly distributed particles result in alloys with the best combination of high strength and ductility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of annealing on the microstructure, texture, tensile properties, and R value evolution of an IF steel sheet after room-temperature symmetric and asymmetric rolling were examined. Simulations were carried out to obtain R values from the experimental textures using the viscoplastic self-consistent polycrystal plasticity model. The investigation revealed the variations in the textures due to annealing and symmetric/asymmetric rolling and showed that the R values correlate strongly with the evolution of the texture. An optimum heat treatment for the balance of strength, ductility, and deep drawability was found to be at 873 K (600 _C) for 30 minutes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(styrene-β-isobutylene-β-styrene)-poly(3-hexylthiophene) (SIBS-P3HT) conducting composite fibers are successfully produced using a continuous flow approach. Composite fibers are stiffer than SIBS fibers and able to withstand strains of up 975% before breaking. These composite fibers exhibit interesting reversible mechanical and electrical characteristics, which are applied to demonstrate their strain gauging capabilities. This will facilitate their potential applications in strain sensing or elastic electrodes. Here, the fabrication and characterization of highly stretchable electrically conducting SIBS-P3HT fibers using a solvent/non-solvent wet-spinning technique is reported. This fabrication method combines the processability of conducting SIBS-P3HT blends with wet-spinning, resulting in fibers that could be easily spun up to several meters long. The resulting composite fiber materials exhibit an increased stiffness (higher Young’s modulus) but lower ductility compared to SIBS fibers. The fibers’ reversible mechanical and electrical characteristics are applied to demonstrate their strain gauging capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the method of external attachment of CFRP to the concrete members is the most effective and economical solution for strengthening and repairing concrete structure in the century, the bonding issue between CFRP and the hosting surface still a challenge for the structural engineers. Many solutions are proposed to overcome the early debonding failure in the strengthened members. This paper reports an ongoing experimental program for testing CFRP retrofitted RC beams and slabs. Fifteen RC beams of dimensions 150x250x2300mm and twelve two- way RC slabs of size 85x1670x1670mm will be strengthened using different types of epoxies, different configurations and variable number of layers of CFRP strips (MBrace-230). Rubber modified epoxy will be used for carbon fibre external attachment using wet lay-up method. Loading frame of 500 kN capacity will be used for beams testing. While for applying uniformly distributed load on the slabs a purpose built attachment will be used. The experimental results will report on the ultimate load, failure mode, mid-span deflection, strains readings in different locations and the ductility for both groups of strengthened beams and slabs. A mathematical model will be developed to predict the behavior of RC beams and two-way slabs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcompression tests were performed to determine the mechanical behavior of nano-crystalline Cu/Fe and Fe/Cu multilayers, as well as monolithic Cu and Fe thin films. The results show that the micropillars of pure Cu thin film bulge out under large compressive strains without failure, while those of pure Fe thin film crack near the top at low compressive strains followed by shear failure. For Cu/Fe and Fe/Cu multilayers, the Cu layers accommodate the majority of plastic deformation, and the geometry constraints imposed by Fe layers exaggerates the bulging in the Cu layers. However, the existence of ductile Cu layers does not improve the overall ductility of Cu/Fe and Fe/Cu multilayers. Cracking in the Fe layers directly lead to the failure of the multilayer micropillars, although the Cu layers have very good ductility. The results imply that suppressing the cracking of brittle layers is more important than simply adding ductile layers for improving the overall ductility of metallic multilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the bond integrity of unmodified and rubber-modified epoxy used for bonding the carbon fibre sheets to the hosting steel surface was investigated. The rigidity of the bonding agent is one of the factors that have a significant role in the premature failure (debonding) of this application. In order to overcome this issue, a series of experiments were conducted on the steel plates using the epoxy resin modified by CTBN and ATBN reactive liquid polymers, in addition to the unmodified epoxy resin. The interface between the carbon fibre matrix and the hosting surface is subjected to a longitudinal shear force for which the corresponding displacement is recorded. The shear stress-strain relationship for the tested specimen is plotted. The result shows that, the bond behaviour of modified epoxy using CTBN and ATBN reactive liquid polymers was improved in terms of ductility and toughness.