69 resultados para Computer input-output equipment.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations. These virtual experiments involve no harm to animals and require little ongoing expenditure. This study documents second-year physiology students' perceptions of and attitudes to simulations by incorporating several computer simulations into the practical program. Computer simulations met the conceptual and, to some extent, the motivational goals of university practical programs. While students enjoyed both wet labs and computer-simulated exercises, overwhelmingly the wet lab provided the more memorable and stimulating learning experience. Based on this study, students suggested that computer simulations could be effectively used to complement rather than replace practical classes where students gain laboratory skills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constructing a monotonicity relating function is important, as many engineering problems revolve around a monotonicity relationship between input(s) and output(s). In this paper, we investigate the use of fuzzy rule interpolation techniques for monotonicity relating fuzzy inference system (FIS). A mathematical derivation on the conditions of an FIS to be monotone is provided. From the derivation, two conditions are necessary. The derivation suggests that the mapped consequence fuzzy set of an FIS to be of a monotonicity order. We further evaluate the use of fuzzy rule interpolation techniques in predicting a consequent associated with an observation according to the monotonicity order. There are several findings in this article. We point out the importance of an ordering criterion in rule selection for a multi-input FIS before the interpolation process; and hence, the practice of choosing the nearest rules may not be true in this case. To fulfill the monotonicity order, we argue with an example that conventional fuzzy rule interpolation techniques that predict each consequence separately is not suitable in this case. We further suggest another class of interpolation techniques that predicts the consequence of a set of observations simultaneously, instead of separately. This can be accomplished with the use of a search algorithm, such as the brute force, genetic algorithm or etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an Evolutionary-based Similarity Reasoning (ESR) scheme for preserving the monotonicity property of the multi-input Fuzzy Inference System (FIS) is proposed. Similarity reasoning (SR) is a useful solution for undertaking the incomplete rule base problem in FIS modeling. However, SR may not be a direct solution to designing monotonic multi-input FIS models, owing to the difficulty in getting a set of monotonically-ordered conclusions. The proposed ESR scheme, which is a synthesis of evolutionary computing, sufficient conditions, and SR, provides a useful solution to modeling and preserving the monotonicity property of multi-input FIS models. A case study on Failure Mode and Effect Analysis (FMEA) is used to demonstrate the effectiveness of the proposed ESR scheme in undertaking real world problems that require the monotonicity property of FIS models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to most scientific disciplines, sports science research has been characterized by comparatively little effort investment in the development of relevant phenomenologi-cal models. Scarcer yet is the application of said models in practice. We present a framework which allows resistance training practitioners to employ a recently proposed neu-romuscular model in actual training program design. The first novelty concerns the monitoring aspect of coaching. A method for extracting training performance characteristics from loosely constrained video sequences, effortlessly and with minimal human input, using computer vision is described. The extracted data is subsequently used to fit the underlying neuromuscular model. This is achieved by solving an inverse dynamics problem corresponding to a particular exercise. Lastly, a computer simulation of hypothetical training bouts, using athlete-specific capability parameters, is used to predict the effected adaptation and changes in performance. The software described here allows the practitioner to manipulate hypothetical training parameters and immediately see their effect on predicted adaptation for a specific athlete. Thus, this work presents a holistic view of the monitoring-assessment-adjustment loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
Undergraduate engineering students require exposure to an appropriate level of practical activities to complement the theory delivered in their course. This not only serves the purpose of catering to students’ different learning styles but in contributing to developing practical skills important to achieving an adequate level of job-readiness. The mode by which practical activities are implemented can vary widely across different units of study and different institutions. Electronics practicals within the School of Engineering at Deakin University have traditionally involved the construction and analysis of bread board circuits. Recently however, the practicals have changed to utilise modern computer-integrated Lab Volt FACET board equipment.


Purpose
This paper discusses electronics practicals using two very different types of laboratory equipment and reports on student perceived efficacy. The aim of the study is to gain an understanding of student perceptions so as to be able to refine the practicals to increase student engagement.

Design / method
This paper discusses two very different types of laboratory equipment employed in electronics practicals within the School of Engineering at Deakin University. This study focuses on students in electronics-related engineering disciplines and their perceived efficacy of the different equipment with the aim of providing valuable insight regarding student engagement. Survey data was collected from first and second year students who had completed successive classes using the different types of laboratory equipment.

Results
When compared with the electronics practicals and equipment previously used at Deakin University, the Lab Volt FACET boards provide a well-structured and resource efficient method for conducting practicals. The preliminary survey results indicate that there are mixed preferences for which type of laboratory equipment students perceive to be the better learning tool. The results also indicate that these perceptions appear to align with students in specific disciplines. These observations suggest that discipline specific characteristics of students are an important consideration in achieving improved student engagement and a positive learning experience.

Conclusions
The outcomes of the preliminary study suggest that there are discipline specific characteristics which affect students’ perceptions of the efficacy of laboratory equipment. These outcomes will assist Deakin’s School of Engineering to refine the use of the Lab Volt FACET board laboratory equipment to achieve improved student engagement. Future research will build upon these findings to investigate expectations of students in different disciplines and whether there is a difference in preferred learning and any correlation to student perceptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we integrate two blind source separation (BSS) methods to estimate the individual channel state information (CSI) for the source-relay and relay-destination links of three-node two-hop multiple-input multiple-output (MIMO) relay systems. In particular, we propose a first-order Z-domain precoding technique for the blind estimation of the relay-destination channel matrix, while an algorithm based on the constant modulus and mutual information properties is developed to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, our algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new multi-output interval type-2 fuzzy logic system (MOIT2FLS) is introduced for protein secondary structure prediction in this paper. Three outputs of the MOIT2FLS correspond to three structure classes including helix, strand (sheet) and coil. Quantitative properties of amino acids are employed to characterize twenty amino acids rather than the widely used computationally expensive binary encoding scheme. Three clustering tasks are performed using the adaptive vector quantization method to construct an equal number of initial rules for each type of secondary structure. Genetic algorithm is applied to optimally adjust parameters of the MOIT2FLS. The genetic fitness function is designed based on the Q3 measure. Experimental results demonstrate the dominance of the proposed approach against the traditional methods that are Chou-Fasman method, Garnier-Osguthorpe-Robson method, and artificial neural network models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordinary differential equations are used for modelling a wide range of dynamic systems. Even though there are many graphical software applications for this purpose, a fully customised solution for all problems is code-level programming of the model and solver. In this project, a free and open source C++ framework is designed to facilitate modelling in native code environment and fulfill the common simulation needs of control and many other engineering and science applications. The solvers of this project are obtained from ODEINT and specialised for Armadillo matrix library to provide an easy syntax and a fast execution. The solver code is minimised and its modification for users have become easier. There are several features added to the solvers such as controlling maximum step size, informing the solver about sudden input change and forcing custom times into the results and calling a custom method at these points. The comfort of the model designer, code readability, extendibility and model isolation have been considered in the structure of this framework. The application manages the output results, exporting and plotting them. Modifying the model has become more practical and a portion of corresponding codes are updated automatically. A set of libraries is provided for generation of output figures, matrix hashing, control system functions, profiling, etc. In this paper, an example of using this framework for a classical washout filter model is explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding the least possible order of a stable Unknown-Input Functional Observer (UIFO) has always been a challenge in observer design theory. A practical recursive algorithm is proposed in this technical note to design a minimal multi-functional observer for multi-input multi-output (MIMO) linear time-invariant (LTI) systems with unknown-inputs. The concept of unknown-input functional observability is introduced,and it is used as a certificate of the convergence of our algorithm. The proposed procedure looks for a number of additional auxiliary functions to be augmented to the original functions desired for reconstruction. The resulting UIFO is proper, and minimal (of minimum possible order). Moreover, the algorithm does not need the system to be unknown-input observable. A numerical example shows the procedure as well as the effectiveness of the proposed algorithm.