89 resultados para Cold-formed Steel structures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of pre-straining and bake-hardening on the mechanical properties of thermomechanically processed 0.2C-1.5Si-1.5Mn-0.2Mo-0.004Nb (wt%) steel was analysed using tensile test, transmission electron microscopy (TEM) and atom probe tomography (APT). This steel after processing had high strength (~1200MPa) and good ductility (~20%) due to the formation of fully bainitic microstructure with nano-layers of bainitic ferrite and retained austenite. The bake hardening (BH) of pre-strained (PS) samples increased the yield strength of steel up to 690MPa and showed the bake-hardening response of 220MPa due to the operation of several strengthening mechanisms such as transformation induced plasticity during pre-straining and pinning the dislocations by carbon during bake-hardening treatment. The carbon content of the bainitic ferrite and retained austenite before and after bake-hardening treatment, the solute distribution between these phases and the local composition of fine Fe-C clusters and particles formed during bake-hardening treatment was calculated using APT. The bainitic ferrite and retained austenite microstructural characteristics such as thickness of the layers and their dislocation density before and after bake-hardening treatment were studied using TEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of advanced high strength steels (AHSS) using a conventional rolling setup is one of the biggest challenges to steel industry. It has been found that fine precipitation in a soft matrix, formed after hot rolling, can markedly improve the mechanical properties. In this work, three dimensional atom probe tomography (3D-APT) has been used to study the formation of precipitates in thermomechanically simulated steel. 3D-APT data reveals co-existence of numerous nano clusters with precipitates. Also, quantitative analysis of the nano clusters and precipitates shows clusters are as small as mm in size. Precipitates are found to be disc shaped with the composition of equilibrium precipitates (TiMo)C. Thus, 3D-APT is seen as an ideal technique to complement TEM to understand the nanoscale features in thermomechanically processed steel for further improvements in the mechanical properties of AHSS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper was to address the effects of multiple laser shock processing (LSP) impacts with different pulse energy on mechanical properties and wear behaviors of AISI 8620 steel. Wear analyses were conducted by means of calculation of volume loss and scanning electron microscope (SEM) of the wear surface. Surface profiles, roughness and micro-hardness were measured. The micro-structures in the surface layer of the untreated and LSPed samples (treated by multiple LSP impacts) were investigated by using transmission electron microscopy (TEM) observations. Experimental results and analyses indicated that multiple LSP impacts can remarkably improve the wear resistance of AISI 8620 steel, and the wear mechanism of multiple LSP impacts on AISI 8620 steel was also entirely revealed. The wear process of the unpolished sample subjected to multiple LSP impacts can be described as follows: the wear rate was big at the beginning of sliding dry wear, but then decreased after the micro-indention in the sample surface was polished to the disappear. This phenomenon can be attributed to the fact that multiple LSP impacts generate many micro-indents in the sample surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A preliminary study showed that the inhibitor lanthanum 4-hydroxy cinnamate ((La4OHcin)3) at a concentration of 400 ppm prevented the hydrogen embrittlement (HE) of SAE 4340 steel tensile specimens when tested under slow strain rate conditions in a 0.01M NaCl. In the presence of the inhibitor, a complex film formed on the surface of specimens during the slow strain rate test (SSRT), and no corrosion pits were detected. Electrochemical polarization studies indicated that the La(4OHcin)3 acted as an anodic inhibitor in the NaCl solution. This article also discusses the mechanism of HE inhibition by La(4OHcin)3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids have been shown to be highly effective lubricants for a steel on aluminium system. This work shows that the chemistry of the anion and cation are critical in achieving maximum wear protection. The performance of the ILs containing a diphenylphosphate (DPP) anion all showed low wear, as did some of the tris(pentafluoroethyl)trifluorophosphate (FAP) and bis(trifluoromethanesulfonyl)amide (NTf2) anion containing ILs. However, in the case of the FAP and NTf2 based systems, a cation dependence was observed, with relatively poor wear resistance obtained in the case of an imidazolium FAP and two pyrrolidinium NTf2 salts, probably due to tribocorrosion caused by the fluorine reaction with the aluminium substrate. The systems exhibiting poor performance generally had a lower viscosity, which also impacts on their tribological properties. Those ILs that exhibited low wear were shown to have formed protective tribofilms on the aluminium alloy surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction stir lap welding (FSLW) experiments have been conducted to study the effects of tool positioning on microstructures formed in the Al-to-steel interface region and on joint strength, defined as maximum applied force over the width (F m/w s) of the test sample, of the welds. Various pin positioning and speed conditions were used in the FSLW experiments followed by microstructure examination on the interface regions and tensile-shear testing on the welds, including an examination on crack propagation in mixed stir zone. It was found that when the pin was close to the bottom steel piece, Al-to-steel reaction occurred resulting in intermetallic outbursts formed along the interface. This represents the case of incomplete metallurgical joint. When the pin was lowered to just reach the steel, a thin and continued interface intermetallic layer formed. Evidences and consideration on growth kinetics have suggested that the layer could only remain thin (≤2.5 μm) during FSLW. This layer could bear a high load during tensile-shear testing and the adjacent aluminium deformed and fractured instead. The resulting F m/w s was high. When the pin penetrated to steel, F m/w s reduced due to brittle fracture being dominant inside mixed stir zone. Evidences have shown that the amount of penetration and speed condition during FSLW do not have large effects on F m/w s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slab–girder structures composed of steel girder and reinforced concrete slab are widely used in buildings and bridges in the world. Their advantages are largely based on the composite action through the shear connection between slab and girder. In order to assess the integrity of this kind of structures, numerous vibration-based damage identification methods have been proposed. In this study, a scaled composite slab–girder model was constructed in the laboratory. Some removable shear connectors were specially designed and fabricated to connect the girder and slab that were cast separately. Then, a two-stage experiment including both static and vibration tests was performed. In the first stage, vibration tests were conducted under different damage scenarios, where a certain number of shear connectors at certain locations were removed step by step. In the second stage, two sets of hydraulic loading equipment were used to apply four-point static loads in the test. The loads are increased gradually until concrete slab cracked. The loading histories as well as deflections at different points of the beam are recorded. Vibration test was carried out before and after concrete cracking. Experimental results show that the changes of mode shapes and relative displacement between slab and girder may be two promising parameters for damage identification of slab–girder structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The common grades of steel used in roll forming are: hot rolled carbon steel, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as it can lead to problems in forming. In roll forming, shape defects such as bow, twist and camber are considered to be related to very small plastic strains in the longitudinal direction and hence knowledge of the material properties in the elastic plastic transition range is necessary if the process is to be modelled accurately. Previous studies with aluminium have indicated that skin pass rolling can lead to residual stresses in the strip. In this work, the study was extended to aged carbon steel and to the effect of roller leveling on both aged material and strip that had been given a light cold rolling to simulate a skin pass treatment. The results suggest that roller leveling reduced the magnitude of residual stresses resulting from skin pass rolling.

The significant differences observed between tensile and bending test results, at and near, the elastic plastic transition reinforces the need to consider bending properties when assessing the effect of prior processing on strip for roll forming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll forming of ultra-high strength steels (UHSS) and other high strength alloys is an advanced manufacturing methodology with the ability of cold forming those materials to complex three-dimensional shapes for lightweight structural applications. Due to their high strength, most of these materials have a reduced ductility which excludes conventional sheet forming methods under cold forming conditions. Roll forming is possible due to its low strains and incremental forming characteristic. Recent research investigates the development of high strength nano-structured aluminum sheet and titanium alloys, as well as their behaviour in roll forming with regard to formability, material behaviour and shape defects. The development of new materials is often limited to small scale samples due to the high preparation costs. In contrast, industrial application needs larger scale tests for validation, especially in roll forming where a minimum sheet length is required to feed the sample trough the roll forming machine. This work describes a novel technique for studying roll forming of a short length of experimental material. DP780 steel strips (500mm – 1300mm length) were welded between two mild steel carrier sheets of similar width and thickness giving an overall strip length of 2m. Roll forming trials were performed and longitudinal edge strain, bow and springback determined on the welded samples and samples formed of full length DP780 strip before and after cut off. The experimental results of this work show that this method gives a reasonable approach for predicting material behavior in roll forming transverse to the rolling direction. In contrast to that significant differences in longitudinal bow were observed between the welded sections and the sections formed of full length DP780 strip; this indicates that the applicability of this method is limited with regard to predicting longitudinal material behavior in roll forming.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, copper-bearing low carbon steels were produced by direct strip casting (DSC) method on a pilot scale. The effects of copper on mechanical, microstructural, and recrystallization behavior were investigated. As-cast microstructure mainly consists of polygonal ferrite and Widmanstatten ferrite. The increase in Cu increases the amount of Widmanstatten ferrite and induces the formation of bainite in the as-cast condition. It was found that copper increases strength and hardness by solid solution strengthening, grain refinement, and precipitation hardening and the increment is significant above 1% Cu in as-cast condition. Six different compositions were selected for recrystallization study. All the samples were cold rolled to 70% reduction and annealed at three different temperatures, 600, 650, and 700°C for various times. Recrystallization responses were strongly dependent on initial microstructure and Cu content and the effect is dramatic between 1 and 2% Cu. Recrystallization time and temperature were found to be increased with increase in copper content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-span steel frame structures prove to be an ideal choice for their speed of construction, relatively low cost, strength, durability and structural design flexibility. For this type of structure, the beam-column connections are critical for its structural integrity and overall stability. This is because a steel frame generally fails first at its connectors, due to the change in stress redistribution with adjacent members and material related failures, caused by various factors such as fire, seismic activity or material deterioration. Since particular attention is required at a steel frame’s connection points, this study explores the applicability of a comprehensive structural health monitoring (SHM) method to identify early damage and prolong the lifespan of connection points of steel frames. An impact hammer test was performed on a scale-model steel frame structure, recording its dynamic response to the hammer strike via an accelerometer. The testing procedure included an intact scenario and two damage scenarios by unfastening four bolt connections in an accumulating order. Based entirely on time-domain experimental data for its calibration, an Auto Regressive Average Exogenous (ARMAX) model is used to create a simple and accurate model for vibration simulation. The calibrated ARMAX model is then used to identify various bolt-connection related damage scenarios via R2 value. The findings in this study suggest that the proposed time-domain approach is capable of identifying structural damage in a parsimonious manner and can be used as a quick or initial solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been well demonstrated that the impact loading resistance capacity of the concrete material can be effectively increased by adding fibres. Recent studies proved that compared to other conventional steel fibres, using steel fibres with spiral shape further increases the post-failure energy absorption and crack stopping capacities of concrete because of the better bonds in the concrete matrix and larger deformation ability. The present study conducts high rate impact tests using split Hopkinson pressure bar (SHPB) to further investigate the dynamic compressive properties of spiral fibre reinforced concrete (SFRC). SFRC specimens with different volume fractions of fibres ranging from zero to 1.5% are prepared and tested. The influences of different volume fractions of fibres on strength, stress-strain relation and energy absorption of SFRC specimens under quasi-static and dynamic loadings are studied. In SHPB compression tests, the strain rate achieved ranges from 50 1/s to 200 1/s. Highspeed camera is used to capture the failure processes and failure modes of SFRC specimens with different fibre volume fractions during the tests for comparison. Dynamic stress-strain curves under different strain rates are derived. The energy absorption capacities of the tested specimens are obtained and compared. Strain rate effects on the compressive strength are also discussed. The corresponding empirical DIF (dynamic increase factor) relations for SFRC are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical copolymers of indigo (1a) and N-acetylindigo (1b) building blocks with defined structures were studied. They belong to the class of polymeric colorants. The polymers consist of 5,5′-connected indigo units with keto structure and N-acetylindigo units with uncommon tautomeric indoxyl/indolone (=1H-indol-3-ol/3H-indol-3-one) structure (see 2a and 2b in Fig. 1). They formed amorphous salts of elongated monomer lengths as compared to monomeric indigo. The polymers were studied by various spectroscopic and physico-chemical methods in solid state and in solution. As shown by small-angle-neutron scattering (SANS) and transmission-electron microscopy (TEM), disk-like polymeric aggregates were present in concentrated solutions (DMSO and aq. NaOH soln.). Their thickness and radii were determined to be ca. 0.4 and ca. 80 nm, respectively. From the disk volumes and by a Guinier analysis, the molecular masses of the aggregates were calculated, which were in good agreement with each other. Defined structural changes of the polymer chains were observed during several-weeks storage in concentrated DMSO solutions. The original keto structure of the unsubstituted indigo building blocks reverted to the more flexible indoxyl/indolone structure. The new polymers were simultaneously stabilized by intermolecular H-bonds to give aggregates, preferentially dimers. Both aggregation and tautomerization were reversible upon dissolution. The polymers were synthesized by repeated oxidative coupling of 1,1′-diacetyl-3,3′-dihydroxybis-indoles 5 (from 1,1′-diacetyl-3,3′-bis(acetyloxy)bis-indoles 6) followed by gradual hydrolysis of the primarily formed poly(N,N′-diacetylindigos) 7 (Scheme). N,N′-Diacetylbis-anthranilic acids 9 were isolated as by-products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lubricant technology must keep pace with the ever increasing demands to reduce energy use and increase service intervals. Ionic liquids were evaluated as lubricants for aluminium in the neat state and as additives in base oils. The ionic liquids formed protective layers that reduced friction and wear