80 resultados para Bone Mass


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise during growth results in biologically important increases in bone mineral content (BMC). The aim of this study was to determine whether the effects of loading were site specific and depended on the maturational stage of the region. BMC and humeral dimensions were determined using DXA and magnetic resonance imaging (MRI) of the loaded and nonloaded arms in 47 competitive female tennis players aged 8-17 years. Periosteal (external) cross-sectional area (CSA), cortical area, medullary area, and the polar second moments of area (Ip, mm4) were calculated at the mid and distal sites in the loaded and nonloaded arms. BMC and I p of the humerus were 11-14% greater in the loaded arm than in the nonloaded arm in prepubertal players and did not increase further in peri- or postpubertal players despite longer duration of loading (both, p < 0.01). The higher BMC was the result of a 7-11% greater cortical area in the prepubertal players due to greater periosteal than medullary expansion at the midhumerus and a greater periosteal expansion alone at the distal humerus. Loading late in puberty resulted in medullary contraction. Growth and the effects of loading are region and surface specific, with periosteal apposition before puberty accounting for the increase in the bone's resistance to torsion and endocortical contraction contributing late in puberty conferring little increase in resistance to torsion. Increasing the bone's rt.osistance to torsion is achieved hy modifying bone shape and mass, not necessarily bone density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary We investigated the effect of playing regular golf and HRT on lumbar and thoracic vertebral bone parameters (measured by QCT) in 72 post-menopausal women. The main finding of this study was that there was positive interaction between golf and HRT on vertebral body CSA and BMC at the thoracic 12 and lumbar 2 vertebra but not the third and seventh thoracic vertebras.

Introduction Identifying specific exercises that load the spine sufficiently to be osteogenic is an important component of primary osteoporosis prevention. The aim of this study was to determine if in postmenopausal women regular participation in golf resulted in greater paravertebral muscle mass and improved vertebral bone strength.

Methods Forty-seven postmenopausal women who played golf regularly were compared to 25 controls. Bone parameters at the mid-vertebral body were determined by QCT at spinal levels T3, T7, T12 and L2 (cross-sectional area (CSA), total volumetric BMD (vBMD), trabecular vBMD of the central 50% of total CSA, BMC and cortical rim thickness). At T7 and L2, CSA of trunk muscles was determined.

Results There was a positive interaction between golf and HRT for vertebral CSA and BMC at T12 and L2, but not at T3 or T7 (p ranging < 0.02 to 0.07). Current HRT use was associated with a 10–15% greater total and trabecular vBMD at all measured vertebral levels. Paravertebral muscle CSA did not differ between groups. Vertebral CSA was the bone parameter significantly related to muscle CSA.

Conclusion These findings provide preliminary evidence that playing golf may improve lower spine bone strength in postmenopausal women who are using HRT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The long-term effects of pregnancy and lactation on measures of bone mineral in women remain unclear.

OBJECTIVE: We studied whether pregnancy or lactation has deleterious long-term effects on bone mineral in healthy women.

DESIGN: We measured bone mineral density (BMD; g/cm(2)) in women aged > or = 18 y. Analyses were performed on 3 data sets: study 1, 83 female twin pairs (21 monozygous and 62 dizygous) aged (x +/- SD) 42.2 +/- 15.5 y who were discordant for ever having been pregnant beyond 20 wk; study 2, 498 twin pairs aged 42.3 +/- 15.0 y; and study 3, 1354 individual twins, their siblings, and family members.

RESULTS: In study 1, there were no significant within-pair differences in unadjusted BMD or BMD adjusted for age, height, and fat mass at the lumbar spine or total-hip or in total-body bone mineral content (BMC; kg) (paired t tests). In study 2, there was no significant within-pair difference in measures of bone mineral or body composition related to the within-pair difference in number of pregnancies. In study 3, subjects with 1 or 2 (n = 455) and > or = 3 pregnancies (n = 473) had higher adjusted lumbar spine BMD (2.9% and 3.8%, respectively; P = 0.001) and total-body BMC (2.2% and 3.1%; P < 0.001) than did nulliparous women (n = 426). Parous women who breast-fed had higher adjusted total-body BMC (2.6%; P = 0.005), total-hip BMD (3.2%; P = 0.04), and lower fat mass (10.9%; P = 0.01) than did parous non-breast-feeders.

CONCLUSION:
We found no long-term detrimental effect of pregnancy or breast-feeding on bone mineral measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary We examined the independent and combined effects of a multi-component exercise program and calcium–vitamin-D3-fortified milk on bone mineral density (BMD) in older men. Exercise resulted in a 1.8% net gain in femoral neck BMD, but additional calcium–vitamin D3 did not enhance the response in this group of older well-nourished men.

Introduction This 12-month randomised controlled trial assessed whether calcium–vitamin-D3-fortified milk could enhance the effects of a multi-component exercise program on BMD in older men.

Methods Men (n  = 180) aged 50–79 years were randomised into: (1) exercise + fortified milk; (2) exercise; (3) fortified milk; or (4) controls. Exercise consisted of high intensity progressive resistance training with weight-bearing impact exercise. Men assigned to fortified milk consumed 400 mL/day of low fat milk providing an additional 1,000 mg/day calcium and 800 IU/day vitamin D3. Femoral neck (FN), total hip, lumbar spine and trochanter BMD and body composition (DXA), muscle strength 25-hydroxyvitamin D and parathyroid hormone (PTH) were assessed.

Results There were no exercise-by-fortified milk interactions at any skeletal site. Exercise resulted in a 1.8% net gain in FN BMD relative to no-exercise (p < 0.001); lean mass (0.6 kg, p < 0.05) and muscle strength (20–52%, p < 0.001) also increased in response to exercise. For lumbar spine BMD, there was a net 1.4–1.5% increase in all treatment groups relative to controls (all p < 0.01). There were no main effects of fortified milk at any skeletal site.

Conclusion A multi-component community-based exercise program was effective for increasing FN BMD in older men, but additional calcium–vitamin D3 did not enhance the osteogenic response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81 - 0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The findings from this 18-month, community-based study revealed that an exercise program involving strength training and jumping activities was feasible and effective for improving bone density, muscle mass and strength in older men. There were no additional skeletal benefits derived from consuming a high calcium-vitamin D milk drink.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ideal artificial bone is expected to grow together with other natural bones with aid of osteoblast cells and to fade out into other natural bones at the same rate of restructuring natural bone. Magnesium is thought to be one of candidate materials, since it has a potential to enhance natural bone growth and to homogenize the implanted artificial bodies with natural bone. In the present study, we are concerned with the formation of trabecular pattern in the natural bone to consider how to reconstruct this pattan in the artificial bone made from magnesium. For that purpose, a series of experiments were perfonned to observe the chemical behavior of dipped magnesium plate and cellular magnesium in Hank's solution. A magnesium specimen is annealed at 773 - 803 K for various periods in an atmosphere to homogenize its microstructure. Mass change of magnesium is estimated by immersing it in Hank's solution. It is well known that magnesium is easily corroded by chlorine ion. Both x-ray diffraction and energy dispersed x-ray analyses were carried out in order to identify a reaction product and its chemical composition. Mass of a magnesium specimen, which was annealed at 803 K for 32.4 ks or 14.4 ks, increases after immersing it into Hank's solution for 4.5 18 Ms (1255 h). Furthermore, the cellular magnesium, which was annealed at 803 K for 1.8 ks, fanned a reacted layer with around 80 μ in thickness and it contained Mg, Ca, P, and a little bit of CI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle mass and strength have been shown to be important factors in bone strength. Low muscular force predisposes to falling especially among elderly. Regular exercise helps to prevent falls and resulting bone fractures. Better understanding of muscle function and its importance on bone properties may thus add information to fracture prevention. Therefore the purpose of this study was to examine the relationship between bone strength and muscular force production. Twenty-young men [24 (2) years] and 20 [24 (3) years] women served as subjects. Bone compressive (BSId) and bending strength indices (50 Imax) were measured with peripheral quantitative computed tomography (pQCT) at tibial mid-shaft and at distal tibia. Ankle plantarflexor muscle volume (MV) was estimated from muscle thickness measured with ultrasonography. Neuromuscular performance was evaluated from the measurements of maximal ground reaction force (GRF) in bilateral jumping and of eccentric maximal voluntary ankle plantarflexor torque (MVC). Specific tension (ST) of the plantarflexors was calculated by dividing the MVC with the muscle volume. Activation level (AL) was measured with superimposed twitch method. Distal tibia BSId and tibial mid-shaft 50 Imax correlated positively with GRF, MVC and MV in men (r = 0.45–0.67, P\0.05). Tibial mid-shaft 50 Imax and neuromuscular performance variables were correlated in women (r = 0.46–0.59, P\0.05), whereas no correlation was seen in distal tibia. In the regression analysis, MV and ST could explain 64% of the variance in tibial mid-shaft bone strength and 41% of the variation in distal tibia bone strength. The study emphasizes that tibial strength is related to maximal neuromuscular performance. In addition, tibial mid-shaft seems to be more dependent on the neuromuscular performance, than distal tibia. In young adults, the association between bone adaptation and neuromuscular performance seems to be moderate and also site and loading specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bones adapt to prevalent loading, which comprises mainly forces caused by muscle contractions. Therefore, we hypothesized that similar associations would be observed between neuromuscular performance and rigidity of bones located in the same body segment. These associations were assessed among 221 premenopausal women representing athletes in high-impact, odd-impact, highmagnitude, repetitive low-impact, and repetitive nonimpact sports and physically active referents aged 17–40 years. The whole group mean age and body mass were 23 (5) and 63 (9) kg, respectively. Bone cross sections at the tibial and fibular mid-diaphysis were assessed with peripheral quantitative computed tomography (pQCT). Density-weighted polar section modulus (SSI) and minimal and maximal crosssectional moments of inertia (Imin, Imax) were analyzed. Bone morphology was described as the Imax/Imin ratio. Neuromuscular performance was assessed by maximal power during countermovement jump (CMJ). Tibial SSI was 31% higher in the high-impact, 19% in the odd-impact, and 30% in the repetitive low-impact groups compared with the reference group (P\0.005). Only the high-impact group differed from the referents in fibular SSI (17%, P\0.005). Tibial morphology differed between groups (P = 0.001), but fibular morphology did not (P = 0.247). The bone-bygroup interaction was highly significant (P\0.001). After controlling for height, weight, and age, the CMJ peak power correlated moderately with tibial SSI (r = 0.31, P\0.001) but not with fibular SSI (r = 0.069, P = 0.313). In conclusion, observed differences in the association between neuromuscular performance and tibial and fibular traits suggest
that the tibia and fibula experience different loading

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Cortical porosity, particularly at the endocortical region, is recognised to play a central role in the pathogenesis of bone fragility. Therefore, the purpose of this study was to: 1) demonstrate how cortical volumetric BMD (vBMD) distribution can be analysed from (p)QCT images and 2) highlight the clinical significance of assessing regional density distribution of cortical bone

Methods: We used pQCT to compare mid-tibial cortical volumetric BMD distribution of 20 young (age 24(SD2) years, mass 77(11) kg, height 178(6) cm) and 25 elderly (72(4) years, 75(9) kg, 172(5) cm) men. Radial and polar cortical vBMD distributions were analysed using a custom built open source analysis tool which allowed the cortex to be divided into three concentric cortical divisions and in 36 cortical sectors originating from the centroid of the bone.

Results:
Mean vBMD did not differ between the groups (1135(16) vs. 1130(28) mg/cm, P=0.696). In contrast, there was a significant age-group by radial division interaction for radial cortical vBMD (P<0.001).

Conclusions:
The proposed analysis method for analysing cortical bone density distribution of pQCT images was effective for detecting regional differences in cortical density between young and elderly men, which would have been missed by just looking at mean vBMD values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the light of the currently increasing drought frequency and water scarcity on oceanic islands, it is crucial for the conservation of threatened insular vertebrates to assess how they will be affected. A 4000 yr old fossil assemblage in the Mare Aux Songes (MAS), southwest Mauritius, Mascarene Islands, contains bones of 100 000+ individual vertebrates, dominated by two species of giant tortoises Cylindraspis triserrata and C. inepta, the dodo Raphus cucullatus, and 20 other vertebrate species (Rijsdijk, Hume, Bunnik, Florens, Baider, Shapiro et al. (2009) Mid-Holocene vertebrate bone Concentration-Lagerstätte on oceanic island Mauritius provides a window into the ecosystem of the dodo (Raphus cucullatus). Quaternary Science Reviews 28: 14–24). Nine radiocarbon dates of bones statistically overlap and suggest mass mortality occurred between 4235 and 4100 cal. yr BP. The mortality period coincides with a widely recognized megadrought event. Our multidisciplinary investigations combining geological, paleontological and hydrological evidence suggests the lake was located in a dry coastal setting and had desiccated during this period. Oxygen isotope data from a Uranium-series dated stalagmite from Rodrigues, an island 560 km east of Mauritius, supports this scenario by showing frequently alternating dry and wet periods lasting for decades between 4122 and 2260 cal. yr BP. An extreme drought resulted in falling water-tables at MAS and elsewhere on the island, perhaps deprived these insular vertebrates of fresh water, which led to natural mass mortalities and possibly to extirpations. In spite of these events, all insular species survived until at least the seventeenth century, confirming their resistance to climatic extremes. Despite this, the generally exponential increase of combined human impacts on islands including loss of geodiversity, habitats, and stocks of fresh water, there will be less environmental safe-haven options for insular endemic and native vertebrates during future megadrought conditions; and therefore will be more prone to extinction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction : Although obesity is a modifiable risk factor for knee osteoarthritis (OA), the effect of weight gain on knee structure in young and healthy adults has not been examined. The aim of this study was to examine the relationship between body mass index (BMI), and change in BMI over the preceding 10-year period, and knee structure (cartilage defects, cartilage volume and bone marrow lesions (BMLs)) in a population-based sample of young to middle-aged females.

Methods :
One hundred and forty-two healthy, asymptomatic females (range 30 to 49 years) in the Barwon region of Australia, underwent magnetic resonance imaging (MRI) during 2006 to 2008. BMI measured 10 years prior (1994 to 1997), current BMI and change in BMI (accounting for baseline BMI) over this period, was assessed for an association with cartilage defects and volume, and BMLs.

Results :
After adjusting for age and tibial plateau area, the risk of BMLs was associated with every increase in one-unit of baseline BMI (OR 1.14 (95% CI 1.03 to 1.26) P = 0.009), current BMI (OR 1.13 (95% CI 1.04 to 1.23) P = 0.005), and per one unit increase in BMI (OR 1.14 (95% CI 1.03 to 1.26) P = 0.01). There was a trend for a one-unit increase in current BMI to be associated with increased risk of cartilage defects (OR 1.06 (95% CI 1.00 to 1.13) P = 0.05), and a suggestion that a one-unit increase in BMI over 10 years may be associated with reduced cartilage volume (-17.8 ml (95% CI -39.4 to 3.9] P = 0.10). Results remained similar after excluding those with osteophytes.

Conclusions :
This study provides longitudinal evidence for the importance of avoiding weight gain in women during early to middle adulthood as this is associated with increased risk of BMLs, and trend toward increased tibiofemoral cartilage defects. These changes have been shown to precede increased cartilage loss. Longitudinal studies will show whether avoiding weight gain in early adulthood may play an important role in diminishing the risk of knee OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary The relationship between social disadvantage and bone mineral density (BMD) is complex and remains unclear; furthermore, little is known of the relationship with vertebral deformities. We observed social disadvantage to be associated with BMD for females, independent of body mass index (BMI). A lower prevalence of vertebral deformities was observed for disadvantaged males.

Introduction The relationship between social disadvantage and BMD appears complex and remains unclear, and little is known about the association between social disadvantage and vertebral wedge deformities. We examined the relationship between social disadvantage, BMD and wedge deformities in older adults from the Tasmanian Older Adult Cohort.

Methods BMD and wedge deformities were measured by dual-energy X-ray absorptiometry and associations with extreme social disadvantage was examined in 1,074 randomly recruited population-based adults (51 % female). Socioeconomic status was assessed by Socio-economic Indexes for Areas values derived from residential addresses using Australian Bureau of Statistics 2001 census data. Lifestyle variables were collected by self-report. Regression models were adjusted for age, BMI, dietary calcium, serum vitamin D (25(OH)D), smoking, alcohol, physical inactivity, calcium/vitamin D supplements, glucocorticoids and hormone therapy (females only).

Results Compared with other males, socially disadvantaged males were older (65.9 years versus 61.9 years, p = 0.008) and consumed lower dietary calcium and alcohol (both p ≤ 0.03). Socially disadvantaged females had greater BMI (29.9 ± 5.9 versus 27.6 ± 5.3, p = 0.002) and consumed less alcohol (p = 0.003) compared with other females. Socially disadvantaged males had fewer wedge deformities compared with other males (33.3 % versus 45.4 %, p = 0.05). After adjustment, social disadvantage was negatively associated with hip BMD for females (p = 0.02), but not for males (p = 0.70), and showed a trend for fewer wedge deformities for males (p = 0.06) but no association for females (p = 0.85).

Conclusions Social disadvantage appears to be associated with BMD for females, independent of BMI and other osteoporosis risk factors. A lower prevalence of vertebral deformities was observed for males of extreme social disadvantage. Further research is required to elucidate potential mechanisms for these associations.