69 resultados para Apple - Storage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physicochemical and rheological properties of yoghurt made from unstandardised unhomogenised buffalo milk were investigated during fermentation and 28 days of storage and compared to the properties of yoghurt made from homogenised fortified bovine milk. A number of differences observed in the gel network can be linked to differences in milk composition. The microstructure of buffalo yoghurt, as assessed by confocal laser scanning microscopy (CLSM) and cryo scanning electron microscopy (cryo-SEM), was interrupted by large fat globules and featured more serum pores. These fat globules have a lower surface area and bind less protein than the homogenised fat globules in bovine milk. These microstructural differences likely lead to the higher syneresis observed for buffalo yoghurt with an increase from 17.4 % (w/w) to 19.7 % (w/w) in the weight of whey generated at days 1 and 28 of the storage. The higher concentration of total calcium in buffalo milk resulted in the release of more ionic calcium during fermentation. Gelation was also slower but the strength of the two gels was similar due to similar protein and total solids concentrations. Buffalo yoghurt was more viscous, less able to recover from deformation and less Newtonian than bovine yoghurt with a thixotropy of 3,035 Pa.s-1 measured for buffalo yoghurt at the end of the storage, at least four times higher than the thixotropy of bovine yoghurt. While the titratable acidity, lactose consumption and changes in organic acid concentrations were similar, differences were recorded in the viability of probiotic bacteria with a lower viability of Lactobacillus acidophilus of 5.17 log (CFU/g) recorded for buffalo yoghurt at day 28 of the storage. Our results show that factors other than the total solids content and protein concentration of milk affect the structural properties of yoghurt. They also illustrate the physicochemical reasons why buffalo and bovine yoghurt are reported to have different sensory properties and provide insight into how compositional changes can be used to alter the microstructure and properties of dairy products. © 2013 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart micro-grids can produce 'renewable' energy and store them in power storage devices. Power loss, however, is a significant problem in power exchange among the micro-grids and between the macro-station and individual micro-grids. To optimally reduce the total power losses in such a power grid system, in this paper, a greedy coalition formation algorithm is proposed, which allows the macro-station to coordinate mutual power exchange among the micro-grids and between each micro-grid and the macro-station. Our algorithm optimizes the total power losses across the entire power grid, including the cost of charging and discharging power storage devices and power losses due to power transfers. The algorithm creates exchange pairs among the micro-grids, giving priority to pairs with higher power loss reduction per exchanged power unit. Through computer-based simulations, we demonstrate that the proposed approach significantly reduces the average power loss compared with the conventional noncooperative method. The simulations also demonstrate that the communications overhead of our proposal (due to negotiations aimed at forming coalitions) does not significantly affect the available communication resource. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the widespread use of smartphones, the loss of a device is a critical problem, which results both in disrupting daily communications and losing valuable property. As a result, tracking systems have been developed to track mobile devices. Previous tracking systems focus on recovering the device's locations after it goes missing, with security methods implemented on the clients. However, users' locations are stored in untrusted third-party services, which may be attacked or eavesdropped. In this paper, we propose a system, named Android Cloud Tracker, to provide a privacy-preserving tracking client and safe storing of user's locations. We use cloud storage controlled by users themselves as storage facilities, and they do not need to worry about any untrusted third party. We implement Android Cloud Tracker prototype on Android phones, and the evaluation shows that it is both practical and lightweight: it generates a small amount of data flow and its distributed architecture provides strong guarantees of location privacy while preserving the ability to efficiently track missing devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indium oxide nanoparticles were synthesised by using a facile and scalable strategy. The as-prepared nanoparticles (20-40 nm) were in situ and homogeneously distributed in a three-dimensional (3D) graphene architecture subsequently during the fabrication process. The obtained nanocomposite acts as a high capacity anode material for lithium-ion batteries and demonstrates good cycle stability. A drastically enhanced capacity of 750 mA h g-1 in comparison with that of bare In2O3 nanoparticles can be maintained after 100 cycles, along with an improved high rate performance (210 mA h g-1 at 1 A g-1 and 120 mA h g-1 at 2 A g-1). The excellent performance is linked with the indium oxide nanoparticles and the unique 3D interconnected porous graphene structure. The highly conductive and porous 3D graphene structure greatly enhances the performance of lithium-ion batteries by protecting the nanoparticles from the electrolyte, stabilizing the nanoparticles during cycles and buffering the volume expansion upon lithium insertion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid storage systems that consist of flash-based solid state drives (SSDs) and traditional disks are now widely used. In hybrid storage systems, there exists a two-level cache hierarchy that regard dynamic random access memory (DRAM) as the first level cache and SSD as the second level cache for disk storage. However, this two-level cache hierarchy typically uses independent cache replacement policies for each level, which makes cache resource management inefficient and reduces system performance. In this paper, we propose a novel adaptive multi-level cache (AMC) replacement algorithm in hybrid storage systems. The AMC algorithm adaptively adjusts cache blocks between DRAM and SSD cache levels using an integrated solution. AMC uses combined selective promote and demote operations to dynamically determine the level in which the blocks are to be cached. In this manner, the AMC algorithm achieves multi-level cache exclusiveness and makes cache resource management more efficient. By using real-life storage traces, our evaluation shows the proposed algorithm improves hybrid multi-level cache performance and also increases the SSD lifetime compared with traditional multi-level cache replacement algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing interest in two-dimensional van der Waals materials, molybdenum disulfide (MoS2) has emerged as a promising material for electronic and energy storage devices. It suffers from poor cycling stability and low rate capability when used as an anode in lithium ion batteries. Here, N-doped MoS2 nanosheets with 2-8 atomic layers, increased interlayer distance, mesoporous structure and high surface area synthesised by a simple sol-gel method show an enhanced lithium storage performance, delivering a high reversible capacity (998.0 mA h g-1, 50 mA g-1), high rate performance (610 mA h g-1, 2 A g-1), and excellent cycling stability. The excellent lithium storage performance of the MoS2 nanosheets might be due to the better electrical and ionic conductivity and improved lithium ion diffusion which are related to their structural characteristics and high concentration N doping. The possible mechanism of the improved performance is proposed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidimensional WSNs are deployed in complex environments to sense and collect data relating to multiple attributes (multi-dimensional data). An efficient information dis-covery for multi-dimensional WSNs deployed in mission–critical environments has become an essential research consideration. Timely and energy efficient information discovery is very impor-tant to maintain the QoS of such mission critical applications. An inefficient information discovery mechanism will result in high transmission of data packets over the network creating bottlenecks leading to unbalanced energy consumption over the network. High latency and inefficient energy consumption will have a direct effect on the QoS of mission-critical applications of particular importance in this regard is the minimization of hotspots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although coastal vegetated ecosystems are widely recognised as important sites of long-term carbon (C) storage, substantial spatial variability exists in quantifications of these ‘blue C’ stocks. To better understand the factors behind this variability we investigate the relative importance of geomorphic and vegetation attributes to variability in the belowground C stocks of saltmarshes in New South Wales (NSW), southeast Australia. Based on the analysis of over 140 sediment cores, we report mean C stocks in the surface metre of sediments (mean ± SE = 164.45 ± 8.74 Mg C ha−1) comparable to global datasets. Depth-integrated stocks (0–100 cm) were more than two times higher in fluvial (226.09 ± 12.37 Mg C ha−1) relative to marine (104.54 ± 7.11) geomorphic sites, but did not vary overall between rush and non-rush vegetation structures. More specifically, sediment grain size was a key predictor of C density, which we attribute to the enhanced C preservation capacity of fine sediments and/or the input of stable allochthonous C to predominantly fine-grained, fluvial sites. Although C density decreased significantly with sediment depth in both geomorphic settings, the importance of deep C varied substantially between study sites. Despite modest spatial coverage, NSW saltmarshes currently hold approximately 1.2 million tonnes of C in the surface metre of sediment, although more C may have been returned to the atmosphere through habitat loss over the past approximately 200 years. Our findings highlight the suitability of using sedimentary classification to predict blue C hotspots for targeted conservation and management activities to reverse this trend.