82 resultados para swimming speed


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose : This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed.

Method : Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km·h-1, and 800 m at 6.5 km·h-1 on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI, and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, "brisk" 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined.

Results : Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI, and 0.99 with individual calibration for a specific MTI. The SEE (mean ± SD) was 0.58 ± 0.30 km·h-1 without individual calibration, 0.19 ± 0.09 km·h-1 with individual calibration for the average MTI monitor, and 0.16 ± 0.08 km·h-1 with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the "brisk" 3-km walk was 0.06 ± 0.25 km·h-1 using individual calibration and 0.28 ± 0.63 km·h-1 without individual calibration (for specific accelerometers).

Conclusion : MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although long-distance transport of marine organisms is constrained by numerous oceanic and biological factors, some species have evolved life-histories reliant on such movements. We examine the factors that promote long-distance transport in a transoceanic migrant, young loggerhead sea turtles (Caretta caretta), from the southeastern U.S. Empirical data from near-surface buoys and simulations in two ocean circulation models indicated that passive drifters are often retained for long periods shoreward of oceanic fronts that delineate coastal and offshore waters. Further simulations revealed that offshore swimming aided newly hatched turtles in moving past fronts and increased turtles’ probability of survival, reaching distant foraging grounds, and encountering favorable temperatures. Swimming was most beneficial in regions that were more favorable under scenarios assuming passive drift. These results have broad implications for understanding the movement processes of many marine species, highlighting likely retention of more planktonic species and potential for dispersal in more nektonic species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotion is one of the major energetic costs faced by animals and various strategies have evolved to reduce its cost. Birds use interspersed periods of flapping and gliding to reduce the mechanical requirements of level flight while undergoing cyclical changes in flight altitude, known as undulating flight. Here we equipped free-ranging marine vertebrates with accelerometers and demonstrate that gait patterns resembling undulating flight occur in four marine vertebrate species comprising sharks and pinnipeds. Both sharks and pinnipeds display intermittent gliding interspersed with powered locomotion. We suggest, that the convergent use of similar gait patterns by distinct groups of animals points to universal physical and physiological principles that operate beyond taxonomic limits and shape common solutions to increase energetic efficiency. Energetically expensive large-scale migrations performed by many vertebrates provide common selection pressure for efficient locomotion, with potential for the convergence of locomotory strategies by a wide variety of species.