77 resultados para solar aided power generation (SAPG)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid network, based on the integration of Fuzzy ARTMAP (FAM) and the Rectangular Basis Function Network (RecBFN), is proposed for rule learning and extraction problems. The underlying idea for such integration is that FAM operates as a classifier to cluster data samples based on similarity, while the RecBFN acts as a “compressor” to extract and refine knowledge learned by the trained FAM network. The hybrid network is capable of classifying data samples incrementally as well as of acquiring rules directly from data samples for explaining its predictions. To evaluate the effectiveness of the hybrid network, it is applied to a fault detection and diagnosis task by using a set of real sensor data collected from a Circulating Water (CW) system in a power generation plant. The rules extracted from the network are analyzed and discussed, and are found to be in agreement with experts’ opinions used in maintaining the CW system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim The purpose of this study was to determine the changes in running mechanics that occur when highly trained runners run barefoot and in a minimalist shoe, and specifically if running in a minimalist shoe replicates barefoot running.

Methods Ground reaction force data and kinematics were collected from 22 highly trained runners during overground running while barefoot and in three shod conditions (minimalist shoe, racing flat and the athlete's regular shoe). Three-dimensional net joint moments and subsequent net powers and work were computed using Newton-Euler inverse dynamics. Joint kinematic and kinetic variables were statistically compared between barefoot and shod conditions using a multivariate analysis of variance for repeated measures and standardised mean differences calculated.

Results There were significant differences between barefoot and shod conditions for kinematic and kinetic variables at the knee and ankle, with no differences between shod conditions. Barefoot running demonstrated less knee flexion during midstance, an 11% decrease in the peak internal knee extension and abduction moments and a 24% decrease in negative work done at the knee compared with shod conditions. The ankle demonstrated less dorsiflexion at initial contact, a 14% increase in peak power generation and a 19% increase in the positive work done during barefoot running compared with shod conditions.

Conclusions Barefoot running was different to all shod conditions. Barefoot running changes the amount of work done at the knee and ankle joints and this may have therapeutic and performance implications for runners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated distribution systems are dispersed throughout regional Queensland to supply small isolated communities that are distant from the main supply grid. The costs of maintaining the electricity supply to these areas is costly; mainly due to the cost of diesel fuel. Furthermore, there is a community focus on climate change, and Ergon Energy aims to reduce the reliance on fossil fuels whilst optimising cost efficiencies and greenhouse gas emissions. The objective of this study is to examine the impacts of renewable energy sources in isolated power systems. For the locations studied, viable renewable energy sources have been integrated into these networks. Anticipated challenges and issues with the integration of the intermittent renewable energy sources were addressed, using mitigation techniques, including energy storage solutions. The investigation and findings demonstrated that network improvements can be achieved by an ideal level of renewable penetration, which has been the main focus of the project. The project involved the development and simulation of MATLAB Simulink and SINCAL models of the two isolated networks at Gununa and Bamaga. The subsequent analysis of these systems has shown a modest penetration level of renewables can be combined with energy storage solutions, which reduces fuel consumption and greenhouse gas emissions at these locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional distribution networks were not originally designed to accommodate power generation facilities. The installation of distributed generation (DG) units with significatn capacity in these passive networks can cause reverse power flows which will result in some conflicts with the operation of the existing protection system. In this context, utilities around the world have started establishing requirements to ensure safe and reliable interconnection of generators in low- and medium-voltage networks. Grid interconnection is presently one of the most important issues involving DG. This paper presents a critical review of the requirements adopted by distribution companies in selected countries such as the USA, the UK, germany and Australia to facilitate the connection of DG. Critical issues such as voltage regulation, islanding operation, dynamic interactions among DG and loads are discussed to identify a few points where attention is still needed to improve the reliability of distribution systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real challenge. Recent grid codes require wind turbines to maintain connected to the grid even during fault conditions which increases concerns about its sensitivity to external faults. So, researchers have given attention to investigating the impact of various external faults, and grid disturbances such as voltage sag and short circuit faults, on the fault ride through (FRT) capability of the doubly fed induction generator (DFIG). However, no attention has been given to the impact of internal faults on the dynamic performance of the machine when the fault occurs within the voltage source converters (VSCs) that interface the DFIG with the grid. This paper investigates the impact of the rotor side converter (RSC) IGBT flashover fault on the common coupling (PCC) reactive power and the FRT is proposed. The DFIG compliance with numerous and recently released FRT grid codes under the studied fault, with and without the STATCOM are examined and compared. Furthermore, the capability of a proposed controller to bring the voltage profile at the point of PCC to the nominal steady-state level; maintain the unity power factor operation; and, maintain the connection of the wind turbine to the grid are examined

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper details a system dynamics model developed to simulate proposed changes to water governance through the integration of supply, demand and asset management processes. To effectively accomplish this, interconnected feedback loops in tariff structures, demand levels and financing capacity are included in the model design, representing the first comprehensive life-cycle modelling of potable water systems. A number of scenarios were applied to Australia's populated South-east Queensland region, demonstrating that introducing temporary drought pricing (i.e. progressive water prices set inverse with availability), in conjunction with supply augmentation through rain-independent sources, is capable of efficiently providing water security in the future. Modelling demonstrated that this alternative tariff structure reduced demand in scarcity periods thereby preserving supply, whilst revenues are maintained to build new water supply infrastructure. In addition to exploring alternative tariffs, the potential benefits of using adaptive pressure-retarded osmosis desalination plants for both potable water and power generation was explored. This operation of these plants for power production, when they would otherwise be idle, shows promise in reducing their net energy and carbon footprints. Stakeholders in industry, government and academia were engaged in model development and validation. The constructed model displays how water resource systems can be reorganised to cope with systemic change and uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenomenal growth in economy experienced in developed countries throughout the 20th century has largely been driven by the availability of conventional energy sources for electricity generation. However, increased concern about fossil fuels and adverse effect of carbon dioxide emission in to atmosphere changed the conventional power system to a viable one by integrating renewable energy sources into the existing system. Among the Renewable Energy (RE) sources, wind energy is one of the fastest growing technologies in reducing the Green House Gas (GHG) emissions in to the atmosphere due to its continuous availability throughout a period. Hence, this paper discusses the performance of a wind-grid connected system in a semi-arid region by conducting a case study. Wilson promontory, one of the best locations for wind generation in Victoria is considered as a case study. Hybrid Optimization Model for Electric Renewable (HOMER) is used as a simulating tool for this analysis. This study also presents the influences of storage system in the proposed Hybrid Power System (HPS) allowing energy to be stored during higher generations or lower load demands. In addition this paper also discusses the major integration issues to facilitate the large scale wind energy into the grid for reliable power generation and distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type reduction (TR) is one of the key components of interval type-2 fuzzy logic systems (IT2FLSs). Minimizing the computational requirements has been one of the key design criteria for developing TR algorithms. Often researchers give more rewards to computationally less expensive TR algorithms. This paper evaluates and compares five frequently used TR algorithms based on their contribution to the forecasting performance of IT2FLS models. Algorithms are judged based on the generalization power of IT2FLS models developed using them. Synthetic and real world case studies with different levels of uncertainty are considered to examine effects of TR algorithms on forecasts' accuracies. As per obtained results, Coupland-Jonh TR algorithm leads to models with a higher and more stable forecasting performance. However, there is no obvious and consistent relationship between the widths of the type reduced set and the TR algorithm. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity and level of uncertainty present in operation of power systems have significantly grown due to penetration of renewable resources. These complexities warrant the need for advanced methods for load forecasting and quantifying uncertainties associated with forecasts. The objective of this study is to develop a framework for probabilistic forecasting of electricity load demands. The proposed probabilistic framework allows the analyst to construct PIs (prediction intervals) for uncertainty quantification. A newly introduced method, called LUBE (lower upper bound estimation), is applied and extended to develop PIs using NN (neural network) models. The primary problem for construction of intervals is firstly formulated as a constrained single-objective problem. The sharpness of PIs is treated as the key objective and their calibration is considered as the constraint. PSO (particle swarm optimization) enhanced by the mutation operator is then used to optimally tune NN parameters subject to constraints set on the quality of PIs. Historical load datasets from Singapore, Ottawa (Canada) and Texas (USA) are used to examine performance of the proposed PSO-based LUBE method. According to obtained results, the proposed probabilistic forecasting method generates well-calibrated and informative PIs. Furthermore, comparative results demonstrate that the proposed PI construction method greatly outperforms three widely used benchmark methods. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mg2Si1-xSnx thermoelectric compounds were synthesized through a solid-state reaction at 700 °C between chips of Mg2Sn-Mg eutectic alloy and silicon fine powders. The Al dopants were introduced by employing AZ31 magnesium alloy that contains aluminum. The as-synthesized Mg2Si1-xSnx powders were consolidated by spark plasma sintering at 650-700 °C. X-ray diffraction and scanning electron microscopy revealed that the Mg2Si1-xSnx bulk materials were comprised of Si-rich and Sn-rich phases. Due to the complex microstructures, the electrical conductivities of Mg2Si1-xSnx are lower than Mg2Si. As a result, the average power factor of Al0.05Mg2Si0.73Sn0.27 is about 1.5 × 10-3 W/mK2 from room temperature to 850 K, being less than 2.5 × 10-3 W/mK2 for Al0.05Mg2Si. However, the thermal conductivity of Mg2Si1-xSnx was reduced significantly as compared to Al0.05Mg2Si, which enabled the ZT of Al0.05Mg2Si0.73Sn0.27 to be superior to Al0.05Mg2Si. Lastly, the electric power generation from one leg of Al0.05Mg2Si and Al0.05Mg2Si0.73Sn0.27 were evaluated on a newly developed instrument, with the peak output power of 15-20 mW at 300 °C hot-side temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A freestanding conducting polymer plate with one side forming a Schottky contact and the other side an Ohmic contact with two different metal electrodes can generate a DC voltage with an output current density as high as 218.6 μA cm(-2) upon mechanical deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical power systems are undergoing highly significant changes in their structures. The emergence of renewable energy units in the power generation sector, the use of high-voltage DC in the power transmission sector, and the prevalence of islanded or integrated microgrids in the distribution sector are the strongest evidence supporting this claim. These changes are mostly the consequences of the increasing energy demand rate, climate change, and environmental challenges, as well as the high investment and maintenance cost of the previous structures. Considering these new conditions and according to the recent development in DC/DC conversion topologies and control techniques, different studies have been conducted on how and why DC microgrids outperform AC microgrids. This study discusses the feasibility of the DC microgrid system according to recent developments in power systems. The efficiency and power loss reduction in DC distribution systems are then analyzed, some of the common strategies and devices for protection systems in such networks are reviewed, and the possible and existing challenges in developing the DC microgrids are highlighted. The mathematical calculations and theories for this evaluation are presented to determine the reliable justification for selecting the appropriate microgrid systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, there is growing interest towards the area of building integrated photovoltaic (BIPV) systems and PV microgrids (MGs) in the field of power generation and distribution systems. This is mainly due to the higher adaptability and compatibility of these systems with preplanned sustainable development strategies in the most urban areas. The quiet operating process and movement free characteristic of photovoltaic systems brought them to the roof tops of the buildings in urban and rural areas and made them the most demanded means of renewable energy systems. This study highlights the problems affecting the performance and efficiency of BIPV systems and presents miscellaneous solutions and recommendations to solve these problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectrochemical cells are increasingly promising devices for harvesting waste heat, offering an alternative to the traditional semiconductor-based design. Advancement of these devices relies on new redox couple/electrolyte systems and an understanding of the interplay between the different factors that dictate device performance. The Seebeck coefficient (Se) of the redox couple in the electrolyte gives the potential difference achievable for a given temperature gradient across the device. Prior work has shown that a cobalt bipyridyl redox couple in ionic liquids (ILs) displays high Seebeck coefficients, but the thermoelectrochemical cell performance was limited by mass transport. Here we present the Se and thermoelectrochemical power generation performance of the cobalt couple in novel mixed IL/molecular solvent electrolyte systems. The highest power density of 880 mW m-2, at a ΔT of 70 °C, was achieved with a 31 (v/v) MPN-[C2mim][B(CN)4] electrolyte combination. The significant power enhancement compared to the single solvent or IL systems results from a combination of superior ionic conductivity and higher diffusion coefficients, shown by electrochemical analysis of the different electrolytes. This is the highest power output achieved to-date for a thermoelectrochemical cell utilising a high boiling point redox electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade, the growing demand of Grid-connected photo voltaic (GCPV) system has been increasing due to an extensive use of renewable energy technologies for sustainable power generation and distribution. High-penetrated GCPV systems enhance the operation of the network by improving the voltage levels and reducing the active power losses along the length of the feeder. This paper aims to investigate the voltage variations and Total Harmonic Distortion (THD) of a typical GCPV system modelled in Power system simulator, PSS SINCAL with the change of level of PV integrations in a Low Voltage (LV) distribution network. Five different case studies are considered to investigate the impact of PV integrations on LV nodes and the corresponding voltage variations and harmonics. In addition, this paper also explores and benchmarks the voltage improvement techniques by implementing On Load Tap Changer (OLTC) with respective to the main transformer and addition of Shunt Capacitor (SC) at appropriate node points in LV network,