81 resultados para shape memory alloy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical indentation of superelastic shape memory alloys (SMAs) has been theoretically analyzed. Two characteristic points on the superelastic indentation curve have been discovered. The bifurcation force corresponding to the bifurcation point relies on the forward transformation stress and the return force corresponding to the return point relies on the reverse transformation stress.
Based on these theoretical relationships, an approach to determine the transformation stresses of superelastic SMAs has been proposed. To improve the accuracy of the measurement, a slope method to locate the two characteristic points from the slope curves is further suggested. Additionally, the spherical indentation hardness was also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ni-Mn-Ga ferromagnetic shape memory alloys (FSMAs) have received great attention during the past decade due to their giant magnetic shape memory effect and fast dynamic response. The crystal structure and crystallographic features of two Ni-Mn-Ga alloys were precisely determined in this study. Neutron diffraction measurements show that Ni48Mn30Ga22 has a Heusler austenitic structure at room temperature; its crystal structure changes into a seven-layered martensitic structure when cooled to 243K. Ni53Mn25Ga22 has an I4/mmm martensitic structure at room temperature. Electron backscattered diffraction (EBSD) analyses reveal that there are only two martensitic variants with a misorientation of ~82° around <110> axis in each initial austenite grain in Ni53Mn25Ga22. The investigation on crystal structure and crystallographic features will shed light on the development of high-performance FSMAs with optimal properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ferromagnetic shape memory alloy of Ni48Mn30Ga22 prepared by induction melting was successfully hot forged. Strong textures and a large anisotropy of in plane plastic flow were developed during the hot forging process. The crystal structures, both in austenitic and martensitic states, were investigated by means of neutron powder diffraction technique. The result suggests that Ni48Mn30Ga22 has a cubic L21 Heusler structure at room temperature, the same as that in the stoichiometric Ni2MnGa. When cooled to 243 K, the Ni48Mn30Ga22 alloy changes into a seven layered orthorhombic martensitic structure. No substantial change of the neutron diffraction pattern was observed upon further cooling to 19 K, indicating that there is no intermartensitic transformation in the investigated alloy, which is different from the transformation processes in the Ni–Mn–Ga alloys with higher martensitic transformation temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes some of our recent results on crystal structure, microstructure, orientation relationship between martensitic variants and crystallographic features of martensitic transformation in Ni-Mn-Ga FSMAs. It was shown that Ni53Mn25Ga22 has a tetragonal I4/mmm martensitic structure at room temperature. The neighboring martensitic variants in Ni53Mn25Ga22 have a compound twinning relationship with the twinning elements K1={112}, K2={11-2}, η1=<11-1>, η2=<111>, P={1-10} and s=0.379. The ratio of the relative amounts of twins within the same initial austenite grain is ~1.70. The main orientation relationship between austenite and martensite is Kurdjumov-Sachs (K-S) relationship. Based on the crystallographic phenomenological theory, the calculated habit plane is {0.690 -0.102 0.716}A (5.95° from {101}A), and the magnitude, direction and shear angle of the macroscopic transformation shear are 0.121, <-0.709 0.105 0.698>A (6.04° from <-101>A) and 6.88°, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by _3 to 40 _C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further _3 to 10 _C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solidstate phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study on the indentation hardness of NiTi shape memory alloys (SMAs) by using a spherical indenter tip and a finite element investigation to understand the experimental results are presented in this paper. It is shown that the spherical indentation hardness of NiTi SMAs increases with the indentation depth. The finding is contrary to the recent study on the hardness of NiTi SMAs using a sharp Berkovich indenter tip, where the interfacial energy plays a dominant role at small indentation depths. Our numerical investigation indicates that the influence of the interfacial energy is not significant on the spherical indentation hardness of SMAs. Furthermore, the depth dependency of SMA hardness under a spherical indenter is explained by the elastic spherical contact theory incorporating the deformation effect of phase transformation of SMAs. Hertz theory for purely elastic contact shows that the spherical hardness increases with the square root of the indentation depth. The phase transformation beneath the spherical tip weakens the depth effect of a purely elastic spherical hardness. This study enriches our knowledge on the basic concept of hardness for SMAs under spherical indentation at micro- and nanoscales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research investigates the design, activation and modelling of a new generation of hybrid materials; called shape memory alloy-composites. These hybrid materials exhibit reversible bending motion with a temperature change and have the potential to be employed in aerospace, automotive and robotic application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, some of our recent results in microstructure, texture and orientation relationship resulting from the application of an external high magnetic field during diffusional and non-diffusional phase transformation in both steel and functional metallic materials have been summarized. A 12-T magnetic field was applied to the diffusional decomposition of austenite in 0.81C-Fe alloy and martensitic transformation of a Ni-Mn-Ga magnetic shape memory alloy. For the 0.81C-Fe alloy, it was found that the magnetic field induces the formation of proeutectoid ferrite and slightly enhances the <001> fiber component in ferrite in the transverse field direction. The magnetic dipolar interaction between Fe atoms in the transverse field direction accounts for this phenomenon. The magnetic field favors the formation of pearlite with Pitsch-Petch 2 (P-P 2) and Isaichev (IS) orientation relationships (OR) between the lamellar ferrite and cementite. For the Ni-Mn-Ga magnetic shape memory alloy, the magnetic field makes the martensite lamellas to grow in some specific directions with their c-axes [001] orientated to the field direction and transverse field direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes.