110 resultados para recrystallization kinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuromuscular electrical stimulation (NMES) applied to the triceps surae muscle is claimed to be effective in improving gait in children with cerebral palsy. The main aim of this study was to determine the effect of NMES on the triceps surae muscle in improving the gait and function of children with cerebral palsy. Twelve children with spastic diplegia or hemiplegia were recruited and randomly assigned to the two experimental groups. The period of the study was 8 weeks (2-4-2 week design). The initial 2 weeks was the control period, in which usual treatment was given to both groups of patients with a pre- and post-treatment assessment. The middle 4 weeks was the experimental period, in which the Treadmill+NMES group received NMES plus treadmill walking training and the Treadmill group underwent treadmill walking training only. Assessment was performed at 2-week intervals. The final 2 weeks was the carryover period, in which treatment to be tested was stopped and reassessment performed again at the end of week 8. An additional treatment and post-treatment assessment were given at weeks 2, 4 and 6 to test for the immediate effect of treatment. Altogether, eight repeated measures with three-dimensional gait analysis and five clinical measurements using the gross motor function measure (GMFM) were performed. Kinetic changes in ankle moment quotient (AMQ) and ankle power quotient (APQ) were not significant either immediately or cumulatively in both groups. Improvement in trend was observed in both groups immediately but not cumulatively. Using the GMFM, functional changes were detected in standing (GMST, p < 0.001) and in walking (GMWK, p = 0.003) using a 'time' comparison. Significant interaction was also detected in GMWK using 'treatment by time' (p = 0.035). The difference between the two groups was not significant on 'treatment' comparison of both GMST and GMWK. Both groups showed improvement in GMST and GMWK cumulatively but there was no difference between the two groups. The effects in both groups could be carried over to 2 weeks after interventions stopped. Both the Treadmill+NMES and Treadmill groups showed improvement in functional outcomes. The trend in the changes of the GMFM score suggested that improvements were greater in the Treadmill+NMES group. There was also a trend showing some immediate improvement in AMQ and APQ.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work examines the microstructure that evolves during the annealing of hot worked magnesium alloy AZ31. First, the influences of deformation and annealing conditions on the microstructures are assessed. It is found that the annealing behaviour is consistent with what one would expect for a recrystallization type reaction. Whilst both the deformation and annealing conditions influence the time required to reach a stable annealed microstructure, the grain size attained is governed solely by the prior deformation conditions employed. At the highest temperature and strain rate examined, the rate of recrystallization is quite high and the grain size was found to be approximately double when annealed for only 1 s prior to quenching. Finally, semi-empirical equations are developed to predict the kinetics of recrystallization, as well as the evolution of grain size, during annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the understanding of the dynamic and post-dynamic recrystallization behaviours of AISI 304 austenitic stainless steel, a series of hot torsion test have been performed under a range of deformation conditions. The mechanical and microstructural features of dynamic recrystallization (DRX) were characterized to compare and contrast them with those of the post-dynamic recrystallization. A necklace type of dynamically recrystallized microstructure was observed during hot deformation at 900 °C and at a strain rate of 0.01 s−1. Following deformation, the dependency of time for 50% recrystallization, t50, changed from “strain dependent” to “strain independent” at a transition strain (ε*), which is significantly beyond the peak. This transition strain was clearly linked to the strain for 50% dynamic recrystallization during deformation. The interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been established. The results also showed an important role of grain growth on softening of deformed austenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An accurate kinetics model is essential for understanding the curing mechanism and predicting the end properties of polymer materials. Graphite/epoxy AS4/ 8552 prepreg is a recent high-performance thermosetting composite modified with thermoplastic, which is being used in the manufacture of aircraft and military structures. The isothermal cures of this system along with another thermoplastic toughened high-performance prepreg, the T800H/3900-2 system, were investigated by real-time Fourier transform infrared (FTIR) spectroscopy. The cure rate was quantitatively analyzed based on the concentration profiles of both the epoxy and primary amine groups. Three autocatalytic models were used to determine kinetics parameters for both composite systems. The model which utilizes an empirical term, the final relative conversion (at different isothermal curing temperatures), describes the experimental data of both systems more satisfactorily than the model which applies a diffusion factor. The modeling results suggest that the curing of epoxy within both prepregs can be assumed to be a second order process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The postdeformation recrystallization behavior of a hot-deformed austenitic stainless steel was investigated based on the first part of this study, in which the microstructure development during hot deformation and, in particular, the evolution of dynamic recrystallization (DRX), was studied. The effect of different parameters such as strain, strain rate, and temperature were examined. The dependency of the time for 50 pct softening, t 50, changed from “strain dependent” to “strain independent” at a transition strain (ε*) that was in the steady-state area of the hot deformation flow curve. The fully recrystallized microstructure showed a similar transition in strain sensitivity. However, this occurred at stains greater than ε*. A mathematical model was developed to predict the transition strain under different deformation conditions. Microstructural measurements show that the transition strain corresponds to approximately 50 pct DRX in the deformed structure at the point of unloading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of a 304 austenitic stainless steel was investigated to characterize the evolution of the dynamically recrystallized structure as a starting point for studies of the postdeformation  recrystallization behavior. The effect of different deformation parameters such as strain, strain rate, and temperature were investigated. The flow curves showed typical signs of dynamic recrystallization (DRX) over a wide range of temperatures and strain rates (i.e., different Zener–Hollomon (Z) values). However, under very high or very low Z values, the flow curves’ shapes changed toward those of the dynamic recovery and multiple peaks, respectively. The results showed that while DRX starts at a strain as low as 60 pct of the peak strain, a fully DRX microstructure needs a high strain of almost 4.5 times the initiation strain. The DRX average grain size showed power-law functions with both the Zener–Hollomon parameter and the peak stress, although power-law breakdown was observed at high Z values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and crystallographic texture development in an austenitic Ni-30 pct Fe model alloy was investigated within the dynamic recrystallization (DRX) regime using hot torsion testing. The prominent DRX nucleation mechanism was strain-induced grain boundary migration accompanied by the formation of large-angle sub-boundaries and annealing twins. The increase in DRX volume fraction occurred through the formation of multiple twinning chains. With increasing strain, the pre-existing Σ3 twin boundaries became gradually converted to general boundaries capable of acting as potent DRX nucleation sites. The texture characteristics of deformed grains resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Similarly, the texture of DRX grains was dominated by low Taylor factor components as a result of their lower consumption rate during the DRX process. The substructure of deformed grains was characterized by “organized,” banded subgrain arrangements, while that of the DRX grains displayed “random,” more equiaxed subgrain/cell configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An austenitic Ni-30%Fe model alloy was employed to investigate the texture and substructure development within the deformed matrix and dynamically recrystallized (DRX) grains during hot torsion deformation. Both the deformed matrix and DRX grains predominantly displayed the crystallographic texture components expected for simple shear deformation. The characteristics of the deformed matrix texture evolution during deformation largely resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Likewise, the comparatively weaker crystallographic texture of DRX grains became increasingly dominated by low Taylor factor components as a result of their easier nucleation and lower consumption rate during DRX. There was a significant difference in the substructure formation mechanism between the deformed matrix and DRX grains for a given texture component. The deformed matrix substructure was largely characterized by “organized”, banded subgrain arrangements with alternating misorientations, while the substructure of DRX grains was more “random” in character and displayed complex, more equiaxed subgrain/cell arrangements characterized by a local accumulation of misorientations. Substructure characteristics of individual orientation components were principally consistent with the corresponding Taylor factor values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The substructure and texture development during dynamic recrystallization (DRX) of an austenitic Ni–30%Fe model alloy was investigated using hot torsion testing. The current results revealed that the DRX texture was dominated by grains with a low Taylor factor component. This was related to the preferred nucleation and lower consumption rates of these grains during DRX. The substructure of DRX grains was ‘‘random” in character and displayed complex subgrain/cell arrangements that largely depended on grain orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel mechanism of post-dynamic softening during annealing of a fully dynamically recrystallized (DRX) austenitic Ni–30Fe alloy is proposed. The initial softening stage involves rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The sub-boundaries within DRX grains progressively disintegrate through dislocation climb and dislocation annihilation, which ultimately leads to the formation of dislocation-free grains, and the grain boundary migration gradually becomes slower. As a result, the DRX texture largely remains preserved throughout the annealing process.