52 resultados para pathological


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis : Insulin's rate of entry into skeletal muscle appears to be the rate-limiting step for muscle insulin action and is slowed by insulin resistance. Despite its obvious importance, uncertainty remains as to whether the transport of insulin from plasma to muscle interstitium is a passive diffusional process or a saturable transport process regulated by the insulin receptor. Methods : To address this, here we directly measured the rate of 125I-labelled insulin uptake by rat hindlimb muscle and examined how that is affected by adding unlabelled insulin at high concentrations. We used mono-iodinated [125I]TyrA14-labelled insulin and short (5 min) exposure times, combined with trichloroacetic acid precipitation, to trace intact bioactive insulin. Results : Compared with saline, high concentrations of unlabelled insulin delivered either continuously (insulin clamp) or as a single bolus, significantly raised plasma 125I-labelled insulin, slowed the movement of 125I-labelled insulin from plasma into liver, spleen and heart (p < 0.05, for each) but increased kidney 125I-labelled insulin uptake. High concentrations of unlabelled insulin delivered either continuously (insulin clamp), or as a single bolus, significantly decreased skeletal muscle 125I-labelled insulin clearance (p < 0.01 for each). Increasing muscle perfusion by electrical stimulation did not prevent the inhibitory effect of unlabelled insulin on muscle 125I-labelled insulin clearance. Conclusions/interpretation : These results indicate that insulin's trans-endothelial movement within muscle is a saturable process, which is likely to involve the insulin receptor. Current findings, together with other recent reports, suggest that trans-endothelial insulin transport may be an important site at which muscle insulin action is modulated in clinical and pathological settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:  The Kimba mouse carries a human vascular endothelial growth factor transgene causing retinal neovascularisation similar to that seen in diabetic retinopathy. Here, we examine the relationship between differential gene expression induced by vascular endothelial growth factor overexpression and the architectural changes that occur in the retinae of these mice.

Methods:  Retinal gene expression changes in juvenile and adult Kimba mice were assayed by microarray and compared with age-matched wild-type littermates. Transcription of selected genes was validated by quantitative real-time polymerase chain reaction. Protein translation was determined using immunohistochemistry and enzyme-linked immunosorbent assay.

Results:  Semaphorin 3C was upregulated, and nuclear receptor subfamily 2, group 3, member 3 (Nr2e3) was downregulated in juvenile Kimba mice. Betacellulin and endothelin 2 were upregulated in adults. Semaphorin 3C colocalized with glial fibrillary acidic protein in Müller cells of Kimba retinae at greater signal intensities than in wild type. Endothelin 2 colocalised to Müller cell end feet and extended into the outer limiting membrane. Endothelin receptor type B staining was most pronounced in the inner nuclear layer, the region containing Müller cell somata.

Conclusions:  An early spike in vascular endothelial growth factor induced significant long-term retinal neovascularisation associated with changes to the retinal ganglion, photoreceptor and Müller cells. Overexpression of vascular endothelial growth factor led to dysregulation of photoreceptor metabolism through differential expression of Nr2e3, endothelin 2, betacellulin and semaphorin 3C. Alterations in the expression of these genes may therefore play key roles in the pathological mechanisms that result from retinal neovascularisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EpCAM is expressed at low levels in a variety of normal human epithelial tissues, but is overexpressed in 70–90% of carcinomas. From a clinico-pathological point of view, this has both prognostic and therapeutic significance. EpCAM was first suggested as a therapeutic target for the treatment of epithelial cancers in the 1990s. However, following several immunotherapy trials, the results have been mixed. It has been suggested that this is due, at least in part, to an unknown level of EpCAM expression in the tumors being targeted. Thus, selection of patients who would benefit from EpCAM immunotherapy by determining EpCAM status in the tumor biopsies is currently undergoing vigorous evaluation. However, current EpCAM antibodies are not robust enough to be able to detect EpCAM expression in all pathological tissues.

Here we report a newly developed EpCAM RNA aptamer, also known as a chemical antibody, which is not only specific but also more sensitive than current antibodies for the detection of EpCAM in formalin-fixed paraffin-embedded primary breast cancers. This new aptamer, together with our previously described aptamer, showed no non- specific staining or cross-reactivity with tissues that do not express EpCAM. They were able to reliably detect target proteins in breast cancer xenograft where an anti-EpCAM antibody (323/A3) showed limited or no reactivity. Our results demonstrated a more robust detection of EpCAM using RNA aptamers over antibodies in clinical samples with chromogenic staining. This shows the potential of aptamers in the future of histopathological diagnosis and as a tool to guide targeted immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ?52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer's disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.