60 resultados para oxygen consumption


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Monitoring athlete well-being is essential to guide training and to detect any progression towards negative health outcomes and associated poor performance. Objective (performance, physiological, biochemical) and subjective measures are all options for athlete monitoring. Objective We systematically reviewed objective and subjective measures of athlete well-being. Objective measures, including those taken at rest (eg, blood markers, heart rate) and during exercise (eg, oxygen consumption, heart rate response), were compared against subjective measures (eg, mood, perceived stress). All measures were also evaluated for their response to acute and chronic training load. Methods The databases Academic search complete, MEDLINE, PsycINFO, SPORTDiscus and PubMed were searched in May 2014. Fifty-six original studies reported concurrent subjective and objective measures of athlete well-being. The quality and strength of findings of each study were evaluated to determine overall levels of evidence. Results Subjective and objective measures of athlete well-being generally did not correlate. Subjective measures reflected acute and chronic training loads with superior sensitivity and consistency than objective measures. Subjective well-being was typically impaired with an acute increase in training load, and also with chronic training, while an acute decrease in training load improved subjective well-being. Summary This review provides further support for practitioners to use subjective measures to monitor changes in athlete well-being in response to training. Subjective measures may stand alone, or be incorporated into a mixed methods approach to athlete monitoring, as is current practice in many sport settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research tested the hypothesis that women who had higher levels of physical fitness will have lower hypothalamo-pituitary-adrenal axis (cortisol) and sympatho-adrenal medullary system (blood pressure and heart rate) responses to food intake compared with women who had low levels of physical fitness. Lower fitness (n = 22; maximal oxygen consumption = 27.4 ± 1.0 mL∙kg(-1)·min(-1)) and higher fitness (n = 22; maximal oxygen consumption = 41.9 ± 1.6 mL∙kg(-1)·min(-1)) women (aged 30-50 years; in the follicular phase of the menstrual cycle) who participated in levels of physical activity that met (lower fitness = 2.7 ± 0.5 h/week) or considerably exceeded (higher fitness = 7.1 ± 1.4 h/week) physical activity guidelines made their own lunch using standardised ingredients at 1200 h. Concentrations of cortisol were measured in blood samples collected every 15 min from 1145-1400 h. Blood pressures and heart rate were also measured every 15 min between 1145 h and 1400 h. The meal consumed by the participants consisted of 20% protein, 61% carbohydrates, and 19% fat. There was a significant overall response to lunch in all of the parameters measured (time effect for all, p < 0.01). The cortisol response to lunch was not significantly different between the groups (time × treatment, p = 0.882). Overall, both groups showed the same pattern of cortisol secretion (treatment p = 0.839). Systolic blood pressure, diastolic blood pressure, mean arterial pressure, or heart rate responses (time × treatment, p = 0.726, 0.898, 0.713, and 0.620, respectively) were also similar between higher and lower fitness women. Results suggest that the physiological response to food intake in women is quite resistant to modification by elevated physical fitness levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: It is clear that reactive oxygen species (ROS) produced during skeletal muscle contraction have a regulatory role in skeletal muscle adaptation to endurance exercise. However, there is much controversy in the literature regarding whether attenuation of ROS by antioxidant supplementation can prevent these cellular adaptations. Therefore, the aim of this study was to determine whether vitamin C and E supplementation attenuates performance and cellular adaptations following acute endurance exercise and endurance training. METHODS: A double-blinded, placebo-controlled randomized control trial was conducted in eleven healthy young males. Participants were matched for peak oxygen consumption (VO2peak) and randomly allocated to placebo or antioxidant (vitamin C (2×500mg/day) and E (400IU/day)) groups. Following a four-week supplement loading period, participants completed acute exercise (10×4min cycling at 90% VO2peak, 2min active recovery). Vastus lateralis muscle samples were collected pre-, immediately-post- and 3h-post-exercise. Participants then completed four weeks of training (3 days/week) using the aforementioned exercise protocol while continuing supplementation. Following exercise training, participants again completed an acute exercise bout with muscle biopsies. RESULTS: Acute exercise tended to increase skeletal muscle oxidative stress as measured by oxidized glutathione (GSSG) (P=0.058) and F2-isoprostanes (P=0.056), with no significant effect of supplementation. Acute exercise significantly increased mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM) and PGC related coactivator (PRC), with no effect of supplementation. Following endurance training, supplementation did not prevent significantly increased VO2peak, skeletal muscle levels of citrate synthase activity or mRNA or protein abundance of cytochrome oxidase subunit 4 (COX IV) (P<0.05). However, following training, vitamin C and E supplementation significantly attenuated increased skeletal muscle superoxide dismutase (SOD) activity and protein abundance of SOD2 and TFAM. CONCLUSION: Following acute exercise, supplementation with vitamin C and E did not attenuate skeletal muscle oxidative stress or increased gene expression of mitochondrial biogenesis markers. However, supplementation attenuated some (SOD, TFAM) of the increased skeletal muscle adaptations following training in healthy young men.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to assess the validity of a GPS tracking system to estimate energy expenditure (EE) during exercise and field sport locomotor movements. Twenty-seven participants each completed one 90 minute exercise session on an outdoor synthetic futsal pitch. During the exercise session participants wore a 5 Hz GPS unit interpolated to 15 Hz (SPI HPU, GPSports Pty Ltd, Australia) and a portable gas analyser (Metamax® 3B, Cortex Pty Ltd, Germany) which acted as the criterion measure of EE. The exercise session was comprised of alternating five minute exercise bouts of randomised walking, jogging, running or a field sport circuit (x3) followed by 10 minutes of recovery. One-way ANOVA showed significant (p<0.01) and very large underestimations between GPS metabolic power derived EE and VO2 derived EE for all field sport circuits (% difference ≈ -44%). No differences in EE were observed for the jog (7.8%) and run (4.8%) while very large overestimations were found for the walk (43.0%). The GPS metabolic power EE over the entire 90 minute session was significantly lower (p<0.01) than the VO2 EE, resulting in a moderate underestimation overall (-19%). The results of this study suggest that a GPS tracking system using the metabolic power model of EE does not accurately estimate EE in field sport movements or over an exercise session consisting of mixed locomotor activities interspersed with recovery periods; however is able to provide a reasonably accurate estimation of EE during continuous jogging and running.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We sought to determine the incidence of V˙O(2) plateau at V˙O(2)max in a cardiovascular-diseased (CVD) population using 4 different sampling intervals (15-breath moving average, 15 s, 30 s, and 60 s) and 3 different V˙O(2) plateau criteria (≤50 mL · min(-1), ≤80 mL · min(-1), and ≤150 mL · min(-1)). A total of 69 people (62 ± 10 yrs.) with recently diagnosed CVD performed a maximal exercise test (10:07 ± 2:24 min) on a treadmill. The test was classified as maximal (n = 57, 2 430 ± 605 mL · min(-1)) if self-terminated due to fatigue or classified as symptom-limited (n = 12, 1 683 ± 438 mL · min(-1)) if symptoms presented. Chi-square analysis revealed a significant (p < 0.05) effect of sampling interval on incidence of V˙O(2) plateau at V˙O(2)max across all 3 V˙O(2) plateau criteria. The sampling interval had an increasingly stronger influence on the incidence of V˙O(2) plateau at V˙O(2)max with smaller criterion thresholds as evidenced by the Cramer's V statistics: [≤50 mL · min(-1) (Cramer's V = 0.548, p < 0.05], ≤80 mL · min(-1) [Cramer's V = 0.489, p < 0.05], ≤150 mL · min(-1) [Cramer's V = 0.214, p < 0.05]. Incidence of V˙O(2) plateau at V˙O(2)max in CVD individuals is significantly influenced by the sampling interval applied. Based on our findings we recommend a15 breath moving average and V˙O(2) plateau criterion of ≤50 mL · min(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Exercise is an essential component of contemporary cardiac rehabilitation programs for the secondary prevention of coronary heart disease. Despite the benefits associated with regular exercise, adherence with supervised exercise-based cardiac rehabilitation remains low. Increasingly powerful mobile technologies, such as smartphones and wireless physiological sensors, may extend the capability of exercise-based cardiac rehabilitation by enabling real-time exercise monitoring for those with coronary heart disease. This study compares the effectiveness of technology-assisted, home-based, remote monitored exercise-based cardiac rehabilitation (REMOTE) to standard supervised exercise-based cardiac rehabilitation in New Zealand adults with a diagnosis of coronary heart disease. METHODS/DESIGN: A two-arm, parallel, non-inferiority, randomised controlled trial will be conducted at two sites in New Zealand. One hundred and sixty two participants will be randomised at a 1:1 ratio to receive a 12-week program of technology-assisted, home-based, remote monitored exercise-based cardiac rehabilitation (intervention), or an 8-12 program of standard supervised exercise-based cardiac rehabilitation (control).The primary outcome is post-treatment maximal oxygen uptake (V̇O2max). Secondary outcomes include cardiovascular risk factors (blood lipid and glucose concentrations, blood pressure, anthropometry), self-efficacy, intentions and motivation to be active, objectively measured physical activity, self-reported leisure time exercise and health-related quality of life. Cost information will also be collected to compare the two modes of delivery. All outcomes are assessed at baseline, post-treatment, and 6 months, except for V̇O2max, blood lipid and glucose concentrations, which are assessed at baseline and post-treatment only. DISCUSSION: This novel study will compare the effectiveness of technology-supported exercise-based cardiac rehabilitation to a traditional supervised approach. If the REMOTE program proves to be as effective as traditional cardiac rehabilitation, it has potential to augment current practice by increasing access for those who cannot utilise existing services. TRIAL REGISTRATION: Australian New Zealand Clinical Trials RegistryStudy ID number: ACTRN12614000843651. Registered 7 August 2014.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy expenditure studies have shown that playing Active Video Games (AVGs) is positively associated with increases in heart rate and oxygen consumption. It is proposed that playing AVGs may be a useful means of addressing inactivity and obesity in children. This study explored children's and parents' perceptions of AVGs and the likely facilitators and barriers to sustained use of AVGs. Data were gathered using focus group interviews: seven with children, four with adults. Both children and parents reported that AVGs offered a way to increase activity and improve fitness. Barriers to sustained engagement, according to parents, were the cost of AVGs and lack of space in the home to play the games. According to children, the likelihood of long-term engagement with AVGs depended on game content and child age, with AVGs being seen as more appropriate for younger children than teenagers. It would appear that there is potential for AVGs to reduce inactivity in young people. However, barriers to widespread, sustainable adoption would need to be addressed if this potential is to be realized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated double blind ingestions of placebo (PLA) versus 6% carbohydrate (CHO) either as capsules (c) or beverage (b) during 60 km self-paced cycling in the heat (32°C and 50% relative humidity). Ten well-trained males (mean ± SD: 26±3 years; 64.5±7.7 kg and 70.7±8.8 ml.kg-1.min-1 maximal oxygen consumption) completed four separate 60 km time trials (TT) punctuated by 1 km sprints (14, 29, 44, 59 km) whilst ingesting either PLAb or PLAc or CHOb or CHOc. The TT was not different among treatments (PLAb 130.26 11.2 min, CHOb 140.5±18.1 min, PLAc 143.1±29.2 min, CHOc 137.3±20.1 min; P>0.05). Effect size (Cohen's d) for time was only moderate when comparing CHOb - PLAb (d = 0.68) and PLAb - PLA c (d = 0.57) whereas all other ES were 'trivial' to 'small'. Mean speed throughout the trial was significantly higher for PLAb only (P<0.05). Power output was only different (P<0.05) between the sprints and low intensity efforts within and across conditions. Core and mean skin temperatures were similar among trials. We conclude that CHO ingestion is of little or no benefit as a beverage compared with placebo during 60 km TT in the heat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of aerobic exercise on perceptual and cerebro-spinal responses to graded electrocutaneous stimuli. The design comprised 2 x 30 min of cycling exercise at 30% and 70% of peak oxygen consumption (VO2 peak) on separate occasions in a counter-balanced order in 10 healthy participants. Assessment of nociceptive withdrawal reflex threshold (NWR-T), pain threshold (PT), and somatosensory evoked potentials (SEPs) to graded electrocutaneous stimuli were performed before and after exercise. Perceptual magnitude ratings and SEPs were compared at 30%PT, 60%PT, 100%PT before (Pre), 5 min after (Post1), and 15 min after (Post2) aerobic exercise. There was no difference in the NWR-T and the PT following exercise at 30% and 70% of VO2 peak. ANOVA for the perceptual response within pooled electrocutaneous stimuli show a significant main effect for time (F2,18=5.41, P=0.01) but no difference for exercise intensity (F1,9=0.02, P=0.88). Within-subject contrasts reveal trend differences between 30%PT and 100%PT for Pre-Post1 (P=0.09) and Pre-Post2 (P=0.02). ANOVA for the SEPs peak-to-peak signal amplitude (N1-P1) show significant main effect for time (F2,18=4.04, P=0.04) but no difference for exercise intensity (F1,9=1.83, P=0.21). Pairwise comparisons for time reveal differences between Pre-Post1 (P=0.06) and Pre-Post2 (P=0.01). There was a significant interaction for SEPs N1-P1 between exercise intensity and stimulus intensity (F2,18=3.56, P=0.05). These results indicate that aerobic exercise did not increase the electrocutaneous threshold for pain and the NWR-T. Aerobic exercise attenuated perceptual responses to innocuous stimuli and SEPs N1-P1 response to noxious stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night-1 at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p < 0.05. There was a 3.7% increase in Hbmass in lowHH+NHnight compared with CON (p = 0.02). In comparison to baseline, Hbmass increased by 1.2% (±1.4%) in the lowHH group, 2.6% (±1.8%) in lowHH+NHnight, and there was a decrease of 0.9% (±4.9%) in CON. VO2max increased by ~4% within both experimental conditions but was not significantly greater than the 1% increase in CON. There was a ~9% difference in pre and post-intervention values in time to exhaustion after lowHH+NH-night (p = 0.03) and a ~8% pre to post-intervention difference (p = 0.006) after lowHH only. We recommend low altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (-21.5 ± 8.8%) and tHb (-10.1 ± 7.7 μM) decreased after exercise (P < 0.05). During CWI, Q̇ (-1.1 ± 0.7 l) and Tmuscle (-6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased (P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased (P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased (P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high (P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT (P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a substantial need to develop new medicines against parasitic diseases via public-private partnerships. Based on high throughput phenotypic screens of largely protozoal pathogens and bacteria, the Medicines for Malaria Venture (MMV) has recently assembled an open-access 'Pathogen Box' containing 400 well-curated chemical compounds. In the present study, we tested these compounds for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm). In an optimised, whole-organism screening assay, using exsheathed third-stage (xL3) and fourth-stage (L4) larvae, we measured the inhibition of larval motility, growth and development of H. contortus. We also studied the effect of the 'hit' compound on mitochondrial function by measuring oxygen consumption. Among the 400 Pathogen Box compounds, we identified one chemical, called tolfenpyrad (compound identification code: MMV688934) that reproducibly inhibits xL3 motility as well as L4 motility, growth and development, with IC50 values ranging between 0.02 and 3 μM. An assessment of mitochondrial function showed that xL3s treated with tolfenpyrad consumed significantly less oxygen than untreated xL3s, which was consistent with specific inhibition of complex I of the respiratory electron transport chain in arthropods. Given that tolfenpyrad was developed as a pesticide and has already been tested for absorption, distribution, excretion, biotransformation, toxicity and metabolism, it shows considerable promise for hit-to-lead optimisation and/or repurposing for use against H. contortus and other parasitic nematodes. Future work should assess its activity against hookworms and other pathogens that cause neglected tropical diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flipper strokes have been proposed as proxies to estimate the energy expended by marine vertebrates while foraging at sea, but this has never been validated on free-ranging otariids (fur seals and sea lions). Our goal was to investigate how well flipper strokes correlate with energy expenditure in 33 foraging northern and Antarctic fur seals equipped with accelerometers, GPS, and time-depth recorders. We concomitantly measured field metabolic rates with the doubly-labelled water method and derived activity-specific energy expenditures using fine-scale time-activity budgets for each seal. Flipper strokes were detected while diving or surface transiting using dynamic acceleration. Despite some inter-species differences in flipper stroke dynamics or frequencies, both species of fur seals spent 3.79 ± 0.39 J/kg per stroke and had a cost of transport of ~1.6-1.9 J/kg/m while diving. Also, flipper stroke counts were good predictors of energy spent while diving (R(2) = 0.76) and to a lesser extent while transiting (R(2) = 0.63). However, flipper stroke count was a poor predictor overall of total energy spent during a full foraging trip (R(2) = 0.50). Amplitude of flipper strokes (i.e., acceleration amplitude × number of strokes) predicted total energy expenditure (R(2) = 0.63) better than flipper stroke counts, but was not as accurate as other acceleration-based proxies, i.e. Overall Dynamic Body Acceleration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For many endotherms, communal roosting saves energy in cold conditions, but how this might affect social dynamics or breeding phenology is not well understood. Using chestnut-crowned babblers (Pomatostomus ruficeps), we studied the effects of nest use and group size on roosting energy costs. These 50 g cooperatively breeding passerine birds of outback Australia breed from late winter to early summer and roost in huddles of up to 20 in single-chambered nests. We measured babbler metabolism at three ecologically relevant temperatures: 5°C (similar to minimum nighttime temperatures during early breeding), 15°C (similar to nighttime temperatures during late breeding) and 28°C (thermal neutrality). Nest use alone had modest effects: even for solitary babblers at 5°C, it reduced nighttime energy expenditures by <15%. However, group-size effects were substantial, with savings of up to 60% in large groups at low temperatures. Babblers roosting in groups of seven or more at 5°C, and five or more at 15°C, did not need to elevate metabolic rates above basal levels. Furthermore, even at 28°C (thermoneutral for solitary babblers), individuals in groups of four or more had 15% lower basal metabolic rate than single birds, hinting that roosting in small groups is stressful. We suggest that the substantial energy savings of communal roosting at low temperatures help explain why early breeding is initiated in large groups and why breeding females, which roost alone and consequently expend 120% more energy overnight than other group members, suffer relatively higher mortality than communally roosting group mates.