77 resultados para microbial blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a series of fibrous membranes made from cellulose acetate (CA) and polyester urethane (PEU) by co-electrospining or blend-electrospining were evaluated for drug release kinetics, in vitro anti-microbial activity and in vivo would healing performance when used as wound dressings. To stop common clinical infections, an antibacterial agent, Polyhexamethylene Biguanide (PHMB) was incorporated into e-spun fibres. The presence of CA in the wound healing membrane was found to improve hydrophilicity and permeability to air and moisture. The in vivo tests indicated that the addition of PHMB and CA considerably improved the wound healing efficiency. CA fibres became slightly swollen upon contacting with the wound exudates. It can not only speed up the liquid evaporation but also create a moisture environment for wound recovery. The drug release dynamics of membranes was controlled by the structure of membranes and component rations within membranes. The lower ration of CA:PEU retained the sound mechanical properties of membranes, and also reduced the boost release effectively and slowed down diffusion of antibacterial agent during in vitro tests. The controlled-diffusion membranes exert long-term anti-infective effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, biotechnological applications of microbial lipases in synthesis of many organic molecules have rapidly increased in non-aqueous media. Microbial lipases are the working horses' in biocatalysis and have been extensively studied when their exceptionally high stability in non-aqueous media has been discovered. Stability of lipases in organic solvents makes them commercially feasibile in the enzymatic esterification reactions. Their stability is affected by temperature, reaction medium, water concentration and by the biocatalyst's preparation. An optimization process for ester synthesis from pilot scale to industrial scale in the reaction medium is discussed. The water released during the esterification process can be controlled over a wide range and has a profound effect on the activity of the lipases. Approaches to lipase catalysis like protein engineering, directed evolution and metagenome approach were studied. This review reports the recent development in the field of non-aqueous microbial lipase catalysis and factors controlling the esterification/transesterification processes in organic media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the influence of hydrogen bonding interactions on the self-assembly, phase behaviour and nanostructures of the block copolymer/homopolymer systems. The different combinations of block copolymer blends and complexes of AB/C, AB/CD, and ABC/D mixtures open a convenient way to tailor various morphologies with controlled size and shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymers can be produced through a variety of mechanisms. They can be derived from microbial systems, extracted from higher organisms such as plants, or synthesized chemically from basic biological building blocks. A wide range of emerging applications rely on all three of these production techniques. In recent years, considerable attention has been given to biopolymers produced by microbes. It is on the microbial level where the tools of genetic engineering can be most readily applied. A number of novel materials are now being developed or introduced into the market. Biopolymers are being developed for use as medical materials, packaging, cosmetics, food additives, clothing fabrics, water treatment chemicals, industrial plastics, absorbents, biosensors, and even data storage elements. This review identifies the possible commercial applications and describes the various methods of production of microbial biopolymers.