103 resultados para intraocular infection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
We consider whether pre-existing streptozotocin induced hyperglycemia in rats affects the ability of the eye to cope with a single episode of acute intraocular pressure (IOP) elevation.
Methods
Electroretinogram (ERG) responses were measured (−6.08 to 1.92 log cd.s.m−2) in anaesthetized (60:5 mg/kg ketamine:xylazine) dark-adapted (>12 h) adult Sprague–Dawley rats 1 week after a single acute IOP elevation to 70 mmHg for 60 min. This was undertaken in rats treated 11 weeks earlier with streptozotocin (STZ, n = 12, 50 mg/kg at 6 weeks of age) or citrate buffer (n = 12). ERG responses were analyzed to derive an index of photoreceptor (a-wave), ON-bipolar (b-wave), amacrine (oscillatory potentials) and inner retinal (positive scotopic threshold response, pSTR) function.
Results
One week following acute IOP elevation there was a significant reduction of the ganglion cell pSTR (−35 ± 11 %, P = 0.0161) in STZ-injected animals. In contrast the pSTR in citrate-injected animals was not significant changed (+16 ± 14 %). The negative component of the STR was unaffected by IOP elevation in either citrate or STZ-treated groups. Photoreceptoral (a-wave, citrate-control +4 ± 3 %, STZ +4 ± 5 %) and ON-bipolar cell (b-wave, control +4 ± 3 %, STZ +4 ± 5 %) mediated responses were not significantly affected by IOP elevation in either citrate- or STZ-injected rats. Finally, oscillatory potentials (citrate-control +8 ± 23 %, STZ +1 ± 17 %) were not reduced 1 week after IOP challenge.
Conclusions
The ganglion cell dominated pSTR was reduced following a single episode of IOP elevation in STZ diabetic, but not control rats. These data indicate that hyperglycemia renders the inner retina more susceptible to IOP elevation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the successful inaugural Lorne Infection and Immunity Conference in 2011, scientists have gathered again on 15–17 February 2012 for a second round of this multidisciplinary international meeting. Sessions covered a range of different topics, including innate and adaptive immune responses to infection, host–pathogen interactions, systems biology, as well as clinical and translational research. Here we summarize some of the main concepts discussed at the meeting and the progress on the development of new therapeutic approaches for the control of infectious diseases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals infected with mycobacteria are likely to experience episodes of concurrent infections with unrelated respiratory pathogens, including the seasonal or pandemic circulating influenza A virus strains. We analyzed the impact of influenza A virus and mycobacterial respiratory coinfection on the development of CD8 T cell responses to each pathogen. Coinfected mice exhibited reduced frequency and numbers of CD8 T cells specific to Mycobacterium bovis bacille Calmette-Guérin (BCG) in the lungs, and the IFN-γ CD8 T cell response to BCG-encoded OVA was decreased in the lungs of coinfected mice, when compared with mice infected with BCG alone. Moreover, after 2 wk of infection, mice coinfected with both pathogens showed a significant increase in the number of mycobacteria present in the lung compared with mice infected with BCG only. Following adoptive transfer into coinfected mice, transgenic CD8 T cells specific for OVA257–264 failed to proliferate as extensively in the mediastinal lymph nodes as in mice infected only with BCG-OVA. Also noted was a reduction in the proliferation of BCG-specific CD4 transgenic T cells in mice coinfected with influenza compared with mice infected with BCG alone. Furthermore, phenotypic analysis of CD11c+ dendritic cells from mediastinal lymph nodes of the infected mice showed that coinfection was associated with decreased surface expression of MHC class II and class I. Thus, concurrent pulmonary infection with influenza A virus is associated with decreased MHC expression on dendritic cells, reduced activation of BCG-specific CD4 and CD8 T cells, and impaired clearance of mycobacteria.