96 resultados para intermittent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The supply of detritus is an important food source for many soft-sediment invertebrates, but its importance for their growth and condition is rarely, if ever, tested directly using manipulative field experiments. Therefore, we designed such a study to: (1) test the importance of fine particulate organic matter for the growth and condition of the infaunal bivalve Soletellina alba; (2) indirectly test the feeding mode of S. alba, which has been assumed to be a deposit feeder like other members of the same superfamily (Tellinoidea); (3) compare growth rates across two summers with contrasting patterns of estuary mouth opening/closing; and (4) compare the condition of individuals used in two field studies (i.e. present versus past) and a past laboratory study. Neither growth nor condition differed when organic content of the sediments was varied, which suggests that S. alba is either a suspension feeder or capable of switching modes of feeding. There was considerable interannual variation in growth with greater growth occurring during the summer with a longer period of mouth opening. This suggests that periods of mouth closure may reduce secondary production within seasonally-closed estuaries. Potential artefacts associated with laboratory trials were also identified, with laboratory bivalves exhibiting poorer condition than those used in two field trials. The present study provides no evidence that variable quantities and qualities of organic matter within the sediments influence the growth and condition of S. alba, but future studies should focus on food supplied via the water column when the estuary is open versus closed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. In semi-arid climates, seasonally-flowing streams provide most of the water required for human use, but knowledge of how water extraction affects ecological processes is limited. Predicted alterations in stream flows associated with the impacts of climate change further emphasize the need to understand these processes. Benthic algae are an important base for stream food webs, but we have little knowledge of how algae survive dry periods or respond to altered flow regimes.

2. We sampled 19 streams within the Grampians National Park, south-eastern Australia and included four components: a survey of different drought refuges (e.g. permanent pools, dry biofilm on stones and dry leaf packs) and associated algal taxa; a survey of algal regrowth on stones after flows recommenced to determine which refuges contributed to regrowth; reciprocal transplant experiments to determine the relative importance of algal drift and regrowth from dry biofilm in recolonization; direct measurement of algal drift to determine taxonomic composition in relation to benthic assemblage composition.

3. Algae showed little specificity for drought refuges but did depend on them; no species were found that were not present in at least one of the perennial pool, dry biofilm or leaf pack refuges. Perennial pools were most closely correlated with the composition of algal assemblages once flows resumed, but the loss or gain of perennial pools that might arise from stream regulation is unlikely to affect the composition of algal regrowth. However, regulated streams were associated with strong increases in algal density in dry biofilm, including increased densities of Cyanobacteria.

4. A model for algal recolonization in seasonally-flowing streams identified three pathways for algal recolonization (drift-dependent, dry biofilm-dependent and contributions from both), depending on whether streams are diatom-dominated or dominated by filamentous algae. The model predicted the effects of changes to stream flow regimes on benthic algal recolonization and provides a basis for hypotheses testable in streams elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multisensor data fusion has attracted a lot of research in recent years. It has been widely used in many applications especially military applications for target tracking and identification. In this paper, we will handle the multisensor data fusion problem for systems suffering from the possibility of missing measurements. We present the optimal recursive fusion filter for measurements obtained from two sensors subject to random intermittent measurements. The noise covariance in the observation process is allowed to be singular which requires the use of generalized inverse. Illustration example shows the effectiveness of the proposed filter in the measurements loss case compared to the available optimal linear fusion methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From a cell signaling perspective, short-duration intense muscular work is typically associated with resistance training and linked to pathways that stimulate growth. However, brief repeated sessions of sprint or high-intensity interval exercise induce rapid phenotypic changes that resemble traditional endurance training. We tested the hypothesis that an acute session of intense intermittent cycle exercise would activate signaling cascades linked to mitochondrialbiogenesis in human skeletal muscle. Biopsies (vastus lateralis) were obtained from six young men who performed four 30-s "all out" exercise bouts interspersed with 4 min of rest (<80 kJ total work). Phosphorylation of AMP-activated protein kinase (AMPK; subunits {alpha}1 and {alpha}2) and the p38 mitogen-activated protein kinase (MAPK) was higher (P ≤ 0.05) immediately after bout 4 vs. preexercise. Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha}(PGC-1{alpha}) mRNA was increased approximately twofold above rest after 3 h of recovery (P ≤ 0.05); however, PGC-1{alpha}protein content was unchanged. In contrast, phosphorylation of protein kinase B/Akt (Thr308 and Ser473) tended to decrease, and downstream targets linked to hypertrophy (p70 ribosomal S6 kinase and 4E binding protein 1) were unchanged after exercise and recovery. We conclude that signaling through AMPK and p38 MAPK to PGC-1{alpha} may explain in part the metabolic remodeling induced by low-volume intense interval exercise, including mitochondrial biogenesis and an increased capacity for glucose and fatty acid oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin signaling is essential for successful muscle regeneration. Although calcineurin inhibition compromises muscle repair, it is not known whether calcineurin activation can enhance muscle repair after injury. Tibialis anterior (TA) muscles from adult wild-type (WT) and transgenic mice overexpressing the constitutively active calcineurin-Aα transgene under the control of the mitochondrial creatine kinase promoter (MCK-CnAα*) were injected with the myotoxic snake venom Notexin to destroy all muscle fibers. The TA muscle of the contralateral limb served as the uninjured control. Muscle structure was assessed at 5 and 9 days postinjury, and muscle function was tested in situ at 9 days postinjury. Calcineurin stimulation enhanced muscle regeneration and altered levels of myoregulatory factors (MRFs). Recovery of myofiber size and force-producing capacity was hastened in injured muscles of MCK-CnAα* mice compared with control. Myogenin levels were greater 5 days postinjury and myocyte enhancer factor 2a (MEF2a) expression was greater 9 days postinjury in muscles of MCK-CnAα* mice compared with WT mice. Higher MEF2a expression in regenerating muscles of MCK-CnAα* mice 9 days postinjury may be related to an increase of slow fiber genes. Calcineurin activation in uninjured and injured TA muscles slowed muscle contractile properties, reduced fatigability, and enhanced force recovery after 4 min of intermittent maximal stimulation. Therefore, calcineurin activation can confer structural and functional benefits to regenerating skeletal muscles, which may be mediated in part by differential expression of MRFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homeostasis in the intact organism is achieved implicitly by repeated incremental feedback (inhibitory) and feedforward (stimulatory) adjustments enforced via intermittent signal exchange. In separated systems, neurohormone signals act deterministically on target cells via quantifiable effector-response functions. On the other hand, in vivo interglandular signaling dynamics have not been estimable to date. Indeed, experimentally isolating components of an interactive network definitionally disrupts time-sensitive linkages. We implement and validate analytical reconstruction of endogenous effector-response properties via a composite model comprising (i) a deterministic basic feedback and feedforward ensemble structure; (ii) judicious statistical allowance for possible stochastic variability in individual biologically interpretable dose–response properties; and (iii) the sole data requirement of serially observed concentrations of a paired signal (input) and response (output). Application of this analytical strategy to a prototypical neuroendocrine axis in the conscious uninjected horse, sheep, and human (i) illustrates probabilistic estimation of endogenous effector dose–response properties; and (ii) unmasks statistically vivid (2- to 5-fold) random fluctuations in inferred target-gland responsivity within any given pulse train. In conclusion, balanced mathematical formalism allows one to (i) reconstruct deterministic properties of interglandular signaling in the intact mammal and (ii) quantify apparent signal-response variability over short time scales in vivo. The present proof-of-principle experiments introduce a previously undescribed means to estimate time-evolving signal-response relationships without isotope infusion or pathway disruption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Work previously presented has shown that ultrasound can be effective in enhancing both the production and cleaning cycles of dairy membrane  processes. In this present work we extend these previous results to consider the effect of ultrasonic frequency and the use of intermittent ultrasound. These results show that the use of continuous low frequency (50 kHz) ultrasound is most effective in both the fouling and cleaning cycles. The application of intermittent high frequency (1 MHz) ultrasound is less effective. At higher transmembrane pressure, high frequency pulsed sonication can indeed lead to a reduction in steady state membrane flux. The benefits of ultrasound arise from a reduction in both concentration polarization and in the resistance provided by the more labile protein deposits that are removed during a water wash. Conversely, the loss of membrane flux when high frequency pulsed sonication is used arises from a significant increase in the more tenacious ‘irreversible’ fouling deposit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benign recurrent intrahepatic cholestasis (BRIC) is a rare autosomal recessive condition characterized by intermittent episodes of pruritis and jaundice that may last days to months. Treatment is often ineffective and symptoms, particularly pruritis, can be severe. Extracorporeal albumin dialysis (molecular adsorbent recycling system, MARS) is a novel treatment which removes albumin bound toxins including bilirubin and bile salts. We describe a case of a 34-year-old man with BRIC and secondary renal impairment who, having failed standard medical therapy, was treated with MARS. The treatment immediately improved his symptoms, renal and liver function tests and appeared to terminate the episode of cholestasis. We conclude that MARS is a safe and effective treatment for BRIC with associated renal impairment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes. Am J Physiol Regul Integr Comp Physiol 297: R1582–R1592, 2009. First published September 23, 2009; doi:10.1152/ajpregu.90857.2008.— Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 ± 3.3 days) were investigated at 7 mo of age. Within 4–6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate  (5.9 ± 0.1 ml O2 ·kg-1·day-1) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 ± 10 kJ·kg-1 ·day-1) and water influx (7.9 ± 0.9 ml·kg-1 ·day-1) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as β-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined forearm blood flow (FBF) in individuals with chronic heart failure (CHF) at rest, moderate exercise, and following limb occlusion. FBF was measured by venous occlusion plethysmography in CHF patients (n = 43) and healthy age-matched volunteers (n = 8) at rest and during exercise consisting of intermittent isometric hand squeezing at 15, 30, and 45% of maximum voluntary contraction (MVC). Peak vasodilatory capacity was also determined following the release of an occluding arm cuff. FBF was lower in CHF patients during exercise and during peak reactive hyperemia (PRH) compared to healthy volunteers, but there was no significant difference between groups at rest. Peak vasodilatory capacity was significantly higher in healthy volunteers than the CHF group ((30.6 ± 8.6 ml±100 mL-1±min-1 and 18.3 ± 6.9 ml±100 mL-1±min-1, respectively). Local blood flow stimulation in response to exercise or limb occlusion is reduced in individuals with CHF, however, there was no difference in resting flows between the two groups, suggesting vasodilatory medication may restore resting blood flow to healthy values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discharging the nutrient rich aquaculture effluents into inland water bodies and oceans is becoming a serious concern due to the adverse effect that brings in the form of eutrophication and subsequent damages to those waters. A laboratory scale biological reactor consisting of a denitrifying compartment followed by a submerged membrane bioreactor (SMBR) compartment was used to treat 40 L d−1 of aquaculture effluent with an average concentration of 74 mg L−1 nitrate (NO3 − ). Sugar was added to the aquaculture effluent in order that to enter into the denitrifying compartment at a carbon: nitrogen ratio (C:N) of 2:1 and 4:1. A hollow fibre membrane with a pore size of 0.4 μm and a filtration area of 0.20 m2 was used in the SMBR and was operated at an average flux of 0.20 m3 m−2 d−1. An intermittent suction period of 12 min followed by a relaxation period of 3 min was maintained in the SMBR throughout the experiment. Different aeration rates of 1, 3, 5 and 10 Lpm were applied to the SMBR to determine the rate of membrane fouling and 5 Lpm aeration rate was found to be optimum with respect to the rate of fouling of membrane at a C:N ratio of 4:1. The average rate of fouling at 1, 3, 5 and 10 Lpm were 1.17, 0.70, 0.48 and 0.52 kPa d−1, respectively. The increase in the rate of fouling when the aeration was increased from 5 to 10 Lpm may be due to the breakage of suspended particles into finer particles which could have increased the fouling of membrane. It was also found that increasing the C:N ratio from 2:1 to 4:1 resulted in more cake being formed on the membrane surface as well as an increase in the reduction of NO3 − from 64% to 78%. Preliminary calculations show that 2.4 to 3.2 g of suspended solids could be accumulated per square meter of membrane surface before physical cleaning of membrane is required (at a transmembrane pressure of 20 kPa).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper evaluates the critical flux obtained by different techniques including tests with different flux step lengths (20 and 40 min and 7 days) and modes of operation (continuous and intermittent) under low and high MLSS concentrations. The paper also analyses a couple of long-term tests (flow rate of 40 and 20 L/day) to obtain the time required to reach the critical flux experimentally and compares those values with the results obtained numerically from a mathematical model. It was found that intermittent mode with membrane relaxation was useful in controlling the fouling of membrane and in restoring the membrane from fouling at lower MLSS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A human peroxisome proliferator-activated receptor alpha ligand binding domain (PPARαLBD)-maltose binding protein fusion construct was expressed in Escherichia coli. A codon optimized DNA sequence encoding human PPARαLBD (aa196–468) was synthesized and ligated into the pDEST17 E. coli expression vector downstream of a MBP solubility fusion tag and an intermittent TEV protease cleavage site. Following auto-induction at 28 °C, PPARαLBD protein was purified to electrophoretic homogeneity by a nickel affinity chromatographic step, on-column TEV protease cleavage followed by Sephacryl S200 size exclusion chromatography. The recombinant protein displayed cross-reactivity with goat anti-(human PPARα) polyclonal antibody and was identified as human PPARα by trypic peptide mass finger-printing. The addition of a PPARα specific ligand (fenofibric acid, GW7647 or GW590735) to the growth media significantly stabilized the PPARαLBD structure and enhanced the expression of soluble protein. In-cell ligand binding was examined by monitoring the enhancement of PPARαLBD expression as a function of the concentration of ligand in the growth media. The efficient expression and in-cell assay of the reported PPARαLBD construct make it amenable to high through-put screening assays in drug discovery programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is the first study to examine the interaction between estuarine discharge and coastal environments, for intermittent estuaries in Victoria. The study examined water quality, bacteria and seaweed communities and the diet of mussels, concluding that estuarine discharge is an important driver for the productivity of nearshore marine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Given the widespread use of water immersion during recovery from exercise, we aimed to investigate the effect of contrast water immersion on recovery of sprint cycling performance, HR and, blood lactate.

Methods: Two groups completed high-intensity sprint exercise before and after a 30-min randomized recovery. The Wingate group (n = 8) performed 3 x 30-s Wingate tests (4-min rest periods). The repeated intermittent sprint group (n = 8) cycled for alternating 30-s periods at 40% of predetermined maximum power and 120% maximum power, until exhaustion. Both groups completed three trials using a different recovery treatment for each trial (balanced randomized application). Recovery treatments were passive rest, 1:1 contrast water immersion (2.5 min of cold (8-C) to 2.5 min of hot (40-C)), and 1:4 contrast water immersion (1 min of cold to 4 min of hot). Blood lactate and HR were recorded throughout, and peak power and total work for pre- and postrecovery Wingate performance and exercise time and total work for repeated sprinting were recorded.

Results: Recovery of Wingate peak power was 8% greater after 1:4 contrast water immersion than after passive rest, whereas both contrast water immersion ratios provided a greater recovery of exercise time (È10%) and total work (È14%) for repeated sprinting than for passive rest. Blood lactate was similar between trials. Compared with passive rest, HR initially declined more slowly during contrast water immersion but increased with each transition to a cold immersion phase.

Conclusions: These data support contrast water immersion being effective in maintaining performance during a short-term recovery from sprint exercise. This effect needs further investigation but is likely explained by cardiovascular mechanisms, shown here by an elevation in HR upon each cold immersion.