62 resultados para grain boundary mobility


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, multimodal nanostructured titanium was engineered using severe plastic deformation. The multimodal structured titanium exhibits an ultrahigh strength of over 940 MPa and a large failure elongation of 24%. The ultrahigh strength is mainly derived from the nanostructured structures; whilst the exceptional ductility originates from the large fraction of high angle grain boundaries, micro-scale structures, and the non-equilibrium grain boundary configuration. It is worth noting that apart from dislocation slip processes, the formation of deformation twins reduced the effective slip distance and increased the strain hardening capacity via the Hall-Petch mechanism, leading to high ductility of the multimodal structured titanium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work provides a summary of the recent findings obtained from the experimental investigation of the grain structure, crystallographic texture and dislocation substructure evolution in an austenitic Ni-30%Fe model alloy during dynamic recrystallization (DRX) and post-dynamic annealing. It has been found that the DRX texture characteristics become increasingly dominated by the low Taylor factor grains during DRX development, which presumably results from the preferred nucleation and lower consumption rates of these grains. The substructure of DRX grains is “random” in character and displays complex, hierarchical subgrain/cell arrangements characterized by accumulation of misorientations across significant distances. The stored energy within DRX grains appears to be principally consistent with the corresponding Taylor factor values. The changes observed within the fully dynamically recrystallized microstructure during postdynamic annealing have provided a basis to suggest a novel mechanism of metadynamic softening for the current experimental conditions. It is proposed that the initial softening stage involves rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The subboundaries within DRX grains progressively disintegrate through dislocation climb and dislocation annihilation, which ultimately leads to the formation of dislocation-free grains, and the grain boundary migration gradually becomes slower. As a result, the DRX texture largely remains preserved throughout the annealing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensitization of 5xxx series Al alloys involving precipitation of β phase (Mg2Al3) at grain boundaries was studied for different exposure times at 100°C upon AA5083-H131 (UNS A95083). In this work, we reveal that fracture surfaces prepared by liquid gallium embrittlement can yield a quantification of grain boundary β phase with significant statistics on β phase size and spacing. This information is a necessary first step toward development of quantitative damage models to describe inter-granular corrosion (IGC) and stress corrosion (IGSCC).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructure evolution and softening processes occurring in 22Cr-19Ni-3Mo austenitic and 21Cr-10Ni-3Mo duplex stainless steels deformed in torsion at 900 and 1200 °C were studied in the present work. Austenite was observed to soften in both steels via dynamic recovery (DRV) and dynamic recrystallisation (DRX) for the low and high deformation temperatures, respectively. At 900 °C, an "organised", self-screening austenite deformation substructure largely comprising microbands, locally accompanied by micro-shear bands, was formed. By contrast, a "random", accommodating austenite deformation substructure composed of equiaxed subgrains formed at 1200 °C. In the single-phase steel, DRX of austenite largely occurred through straininduced grain boundary migration accompanied by (multiple) twinning. In the duplex steel, this softening mechanism was complemented by the formation of DRX grains through subgrain growth in the austenite/ferrite interface regions and by large-scale subgrain coalescence. At 900 °C, the duplex steel displayed limited stress-assisted phase transformations between austenite and ferrite, characterised by the dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the transformed regions with strain. The softening process within ferrite was classified as "extended DRV", characterised by a continuous increase in misorientations across the sub-boundaries with strain, for both deformation temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two steels, ferritic, high strength with interphase precipitation and nano-bainitic, were used to show the advances in and application of atom probe. The coexistence of the nano-scale, interphase Nb-Mo-C clusters and stoichiometric MC nano particles was found in the high strength steel after thermomechanical processing. Moreover, the segregation of carbon at different heterogeneous sites such as grain boundary that reduces the solute element available for fine precipitation was observed. The APT study of the solutes redistribution between the retained austenite and bainitic ferrite in the nano-bainitic steel revealed: (i) the presence of two types of the retained austenite with higher and lower carbon content and (ii) segregation of carbon at the local defects such as dislocations in the bainitic ferrite during the isothermal hold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A partial differential equation is developed that captures the evolution of key characteristics of tensile twinning in magnesium base alloys. The objective is to provide a framework for ascertaining the effects of hardening – due to grain refinement, precipitation and dislocation substructure – on twin volume fraction, thickness and length. The model is developed with the help of observations made on alloy AZ31. It is shown that it is necessary to consider the nucleation of twins at locations where neighbouring twins impinge on the grain boundary. The model provides a reasonable approximation for the role of grain size on twinning. It predicts a period of low apparent work hardening following yielding and shows that this should be more extensive for finer grain sizes, in agreement with experiment. Finally, some predictions are made on the effect of changing the resistance to twinning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extrusion textures in magnesium alloys are of high interest due to their influence on yield asymmetry. This data supports work describing three mechanisms of texture selection that may play a role during extrusion. These mechanisms involve localized differences in deformation at the grain level, the change in local environment experienced by grain boundary bulges and shear banding. The work employs visco-plastic crystal plasticity and electron backscattering diffraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium alloy ZE41 (Mg-Zn-RE-Zr), which is used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This work investigates the mechanism of corrosion, and the interaction between the grain boundary intermetallic phases, the zirconium (Zr)-rich regions within the grains and the bulk Mg rich matrix in both the as-cast and heat-treated conditions. The results of optical and scanning electron microscopy (SEM) show the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment. The Zr-rich regions play a distinct role in the early stages of corrosion with this alloy. The second part of this work investigates the interaction of two different ionic liquids (ILs) with the surface of the ZE41 alloy. ILs based on trihexyltetradecylphosphonium (P 6,6,6,14) coupled with either diphenylphosphate (DPP) or bis(trifluoromethanesulfonyl) amide (Tf 2N) have been shown to react with Mg alloy surfaces, leading to the formation of a surface film that can improve the corrosion resistance of the alloy. The interaction of the ILs with the ZE41 surface has been investigated by optical microscopy and SEM. Surface characterization has been performed using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The surface characterization and microscopy revealed the preferential interaction with the grain boundaries and grain boundary phases. Thus the morphology and microstructure of the Mg surface seems critical in determining the nature of the interaction with the IL. The corrosion protection of the IL films formed on the ZE41 surface was investigated by SEM and potentiodynamic polarisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transformation texture was studied in a Ti-6Al-4V alloy for two microstructures produced through different phase transformation mechanisms (i.e. diffusional vs. displacive). Both microstructures revealed qualitatively similar crystallographic texture characteristics, having two main texture components with Euler angles of (90°, 90°, 0°) and (90°, 30°, 0°). However, the overall α texture strength was considerably weaker in the martensitic structure (i.e. displacive mechanism) compared with the α + β microstructure produced through slow cooling (i.e. diffusional mechanism). The intervariant boundary distribution in martensite mostly revealed five misorientations associated with the Burgers orientation relationship. The five-parameter boundary analysis also showed a very strong interface plane orientation texture, with interfaces terminated mostly on the prismatic planes {hki0}, when misorientation was ignored. The highest intervariant boundary populations belonged to the 63.26°/[10 553 ] and 60°/[112 0] misorientations, with length fractions of 0.38 and 0.3, respectively. The former was terminated on (41 3 0), and the latter was a symmetric tilt boundary, terminated on (1 011). The intervariant plane distribution in martensite was determined more by the constraints of the phase transformation than by the relative interface energies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AA2024-Tx is one of the most common high-strength aluminium alloys used in the aerospace industry. This article reviews current understanding of the microstructure of sheet AA2024-T3 and chronicles the emergence of new compositions for constituent particles as well as reviews older literature to understand the source of the original compositions. The review goes on to summarise older and more recent studies on corrosion of AA2024-T3, drawing attention to areas of corrosion initiation and propagation. It pays particular attention to modern approaches to corrosion characterisation as obtained through microelectrochemical techniques and physicochemical characterisation, which provide statistical assessment of factors that contribute to corrosion of AA2024. These approaches are also relevant to other alloys.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe plastic deformation via equal-channel angular pressing was shown to induce characteristic ultra-fast diffusion paths in Ni (Divinski et al., 2011). The effect of heat treatment on these paths, which were found to be represented by deformation-modified general high-angle grain boundaries (GBs), is investigated by accurate radiotracer self-diffusion measurements applying the 63Ni isotope. Redistribution of free volume and segregation of residual impurities caused by the heat treatment triggers relaxation of the diffusion paths. A correlation between the GB diffusion kinetics, internal friction, microstructure evolution and microhardness changes is established and analyzed in detail. A phenomenological model of diffusion enhancement in deformation-modified GBs is proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Excellent superplastic elongations (in excess of 1,200%) were achieved in a commercial cast AZ31 alloy processed by low temperature equal-channel angular pressing (ECAP) with a back-pressure to produce a bimodal grain structure. In contrast, AZ31 alloy processed by ECAP at temperatures higher than 200 °C showed a reasonably uniform grain structure and relatively low ductility. It is suggested that a bimodal grain structure is advantageous because the larger grains contribute to strain hardening thus delaying the onset of necking, while grain boundary sliding associated with small grains provides a stabilizing effect due to enhanced strain rate sensitivity. © 2008 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation was initiated to evaluate the feasibility of using equal-channel angular pressing (ECAP) to obtain high superplastic elongations in the AZ31 alloy with a back pressure producing a bimodal grain structure. Processing by ECAP was performed using a die with an angle of 90 ° between the two parts of the channel and a ram velocity of 15-20 mm/sec. Some pressing were conducted with a back-pressure by making use of a backward punch in the exit channel of the die. Molybdenum disulphide and a graphite spray were used as lubricants and billets were pressed using processing route B c in which each billet is rotated by 90 °. The pressing were conducted at temperatures in the range from 423 to 523 K and every billet was quenched in water after each pass. The significance of the bimodal microstructure is attributed to the ability of the larger grains to more easily accommodate grain boundary sliding through intragranular slip and twinning and to contribute to the strain hardening capability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) metals produced by equal channel angular pressing (ECAP) exhibit outstanding mechanical properties. They show high strength under monotonic loading as well as strongly enhanced fatigue lives in the Wöhler S-N-plot compared to their coarse grained (CG) counterparts. It could be shown that the fatigue lives can be significantly enhanced further by applying backpressure during ECAP. Besides the positive effect of backpressure on the processability of hard to deform materials via ECAP, the hydrostatic stress induced by backpressure also influences the mechanical properties under monotonic and cyclic loading. Therefore the influence of backpressure on ECAPed Cu99.5 and on the ECAPed aluminum alloy AA5754 was investigated. It is shown that backpressure has no effect on the hardness and grain size in Cu99.5 but changes the grain boundary misorientation to higher fractions of low angle grain boundaries. Also the temperature dependency of the yield strength as well as the hardening behavior under monotonic compression is affected. The cyclic deformation behavior of Cu99.5 is not strongly influenced by backpressure, but the mean stress level changes drastically. The fatigue life increases with the application of backpressure at low plastic amplitudes due to a change in the crack initiation and propagation. Aim of this work is the investigation of the influence of backpressure during equal channel angular pressing (ECAP) on the mechanical properties under monotonic and cyclic loading. Therefore we performed hardness measurements, compression, and fatigue tests on ECAPed Cu99.5 and AA5754. The results are discussed in terms of microstructure and relevant deformation and damage mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ neutron diffraction, transmission electron microscopy (TEM) and atom probe tomography (APT) have been used to study the early stages of bainite transformation in a 2 mass% Si nano-bainitic steel. It was observed that carbon redistribution between the bainitic ferrite and retained austenite at the early stages of the bainite transformation at low isothermal holding occurred in the following sequence: (i) formation of bainitic ferrite nuclei within carbon-depleted regions immediately after the beginning of isothermal treatment; (ii) carbon partitioning immediately after the formation of bainitic ferrite nuclei but substantial carbon diffusion only after 33 min of bainite isothermal holding; (iii) formation of the carbon-enriched remaining austenite in the vicinity of bainitic laths at the beginning of the transformation; (iv) segregation of carbon to the dislocations near the austenite/ferrite interface; and (v) homogeneous redistribution of carbon within the remaining austenite with the progress of the transformation and with the formation of bainitic ferrite colonies. Bainitic ferrite nucleated at internal defects or bainite/austenite interfaces as well as at the prior austenite grain boundary. Bainitic ferrite has been observed in the form of an individual layer, a colony of layers and a layer with sideplates at the early stages of transformation.