90 resultados para glucose tolerance test


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a strong inverse relationship between a females own birth weight and her subsequent risk for gestational diabetes with increased risk of developing diabetes later in life. We have shown that growth restricted females develop loss of glucose tolerance during late pregnancy with normal pancreatic function. 


The aim of this study was to determine whether growth restricted females develop long-term impairment of metabolic control after an adverse pregnancy adaptation. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) in late pregnancy (E18) in F0 female rats. F1 Control and Restricted female offspring were mated with normal males and allowed to deliver (termed Ex-Pregnant). Age-matched Control and Restricted Virgins were also studied and glucose tolerance and insulin secretion were determined. Pancreatic morphology and hepatic glycogen and triacylglycerol content were quantified respectively.

Restricted females were born lighter than Control and remained lighter at all time points studied (p<0.05). Glucose tolerance, first phase insulin secretion and liver glycogen and triacylglycerol content were not different across groups, with no changes in β-cell mass. Second phase insulin secretion was reduced in Restricted Virgins (-34%, p<0.05) compared to Control Virgins, suggestive of enhanced peripheral insulin sensitivity but this was lost after pregnancy. Growth restriction was associated with enhanced basal hepatic insulin sensitivity, which may provide compensatory benefits to prevent adverse metabolic outcomes often associated with being born small. A prior pregnancy was associated with reduced hepatic insulin sensitivity with effects more pronounced in Controls than Restricted.

Our data suggests that pregnancy ameliorates the enhanced peripheral insulin sensitivity in growth restricted females and has deleterious effects for hepatic insulin sensitivity, regardless of maternal birth weight.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D. © 2014 the American Physiological Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 Liver steatosis is associated with the development of insulin resistance and the pathogenesis of type 2 diabetes. We tested the hypothesis that protein signals originating from steatotic hepatocytes communicate with other cells to modulate metabolic phenotypes. We show that the secreted factors from steatotic hepatocytes induce pro-inflammatory signaling and insulin resistance in cultured cells. Next, we identified 168 hepatokines, of which 32 were differentially secreted in steatotic versus non-steatotic hepatocytes. Targeted analysis showed that fetuin B was increased in humans with liver steatosis and patients with type 2 diabetes. Fetuin B impaired insulin action in myotubes and hepatocytes and caused glucose intolerance in mice. Silencing of fetuin B in obese mice improved glucose tolerance. We conclude that the protein secretory profile of hepatocytes is altered with steatosis and is linked to inflammation and insulin resistance. Therefore, preventing steatosis may limit the development of dysregulated glucose metabolism in settings of overnutrition. Meex et al. use proteomic approaches to identify steatosis as a factor that changes protein secretion in hepatocytes. Secreted factors from steatotic hepatocytes caused insulin resistance and inflammation. One secreted protein, fetuin B, was identified as a hepatokine that is increased in type 2 diabetes and causes impaired glucose metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Central melanocortin pathways are well-established regulators of energy balance. However, scant data exist about the role of systemic melanocortin peptides. We set out to determine if peripheral α-melanocyte stimulating hormone (α-MSH) plays a role in glucose homeostasis and tested the hypothesis that the pituitary is able to sense a physiological increase in circulating glucose and responds by secreting α-MSH.

METHODS: We established glucose-stimulated α-MSH secretion using humans, non-human primates, and mouse models. Continuous α-MSH infusions were performed during glucose tolerance tests and hyperinsulinemic-euglycemic clamps to evaluate the systemic effect of α-MSH in glucose regulation. Complementary ex vivo and in vitro techniques were employed to delineate the direct action of α-MSH via the melanocortin 5 receptor (MC5R)-PKA axis in skeletal muscles. Combined treatment of non-selective/selective phosphodiesterase inhibitor and α-MSH was adopted to restore glucose tolerance in obese mice.

RESULTS: Here we demonstrate that pituitary secretion of α-MSH is increased by glucose. Peripheral α-MSH increases temperature in skeletal muscles, acts directly on soleus and gastrocnemius muscles to significantly increase glucose uptake, and enhances whole-body glucose clearance via the activation of muscle MC5R and protein kinase A. These actions are absent in obese mice, accompanied by a blunting of α-MSH-induced cAMP levels in skeletal muscles of obese mice. Both selective and non-selective phosphodiesterase inhibition restores α-MSH induced skeletal muscle glucose uptake and improves glucose disposal in obese mice.

CONCLUSION: These data describe a novel endocrine circuit that modulates glucose homeostasis by pituitary α-MSH, which increases muscle glucose uptake and thermogenesis through the activation of a MC5R-PKA-pathway, which is disrupted in obesity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Animal studies report a nephron deficit in offspring exposed to maternal diabetes, yet are limited to models of severe hyperglycaemia which do not reflect the typical clinical condition and which are associated with foetal growth restriction that may confound nephron endowment. We aimed to assess renal morphology and function in offspring of leptin receptor deficient mice (Leprdb/+) and hypothesized that exposure to impaired maternal glucose tolerance (IGT) would be detrimental to the developing kidney.

Methods: Nephron endowment was assessed in offspring of C57BKS/J Leprdb/+ and +/+ mice at embryonic day (E)18 and postnatal day (PN)21 using design-based stereology. Transcutaneous measurement of renal function and total glomerular volume were assessed in 6-month-old offspring. Only +/+ offspring of Leprdb/+ dams were analysed.

Results: Compared with +/+ dams, Leprdb/+ dams had a 20% and 35% decrease in glucose tolerance prior to pregnancy and at E17.5 respectively. Offspring of IGT Leprdb/+ dams had approximately 15% fewer nephrons at E18.5 and PN21 than offspring of +/+ dams. There was no difference in offspring bodyweight. Despite normal renal function, total glomerular volume was 13% greater in 6-month-old offspring of IGT Leprdb/+ dams than in +/+ offspring.

Conclusions: IGT throughout gestation resulted in a nephron deficit that was established early in renal development. Maternal IGT was associated with glomerular hypertrophy in adult offspring, likely a compensatory response to maintain normal renal function. Given the increasing prevalence of IGT, monitoring glucose from early in gestation may be important to prevent altered kidney morphology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity residing within its RING finger domain. We have previously reported that c-Cbl–deficient mice exhibit elevated energy expenditure, reduced adiposity, and improved insulin action. In this study, we examined mice expressing c-Cbl protein with a loss-of-function mutation within the RING finger domain (c-CblA/– mice). Compared with control animals, c-CblA/– mice display a phenotype that includes reduced adiposity, despite greater food intake; reduced circulating insulin, leptin, and triglyceride levels; and improved glucose tolerance. c-CblA/– mice also display elevated oxygen consumption (13%) and are protected against high-fat diet–induced obesity and insulin resistance. Unlike c-CblA/– mice, mice expressing a mutant c-Cbl with the phosphatidylinositol (PI) 3-kinase binding domain ablated (c-CblF/F mice) exhibited an insulin sensitivity, body composition, and energy expenditure similar to that of wild-type animals. These results indicate that c-Cbl ubiquitin ligase activity, but not c-Cbl–dependent activation of PI 3-kinase, plays a key role in the regulation of whole-body energy metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14-/- mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter contains sections titled:

* Incidence and prevalence of diabetes
* Overview of diabetes
* Management strategies
* Management targets and regimens
* Short-term complications
* Long-term complications
* Psychological aspects
* Diabetes management requires integrated approaches
* People with diabetes' needs, capacities and resources
* Health professionals' needs
* Integration - is it possible?
* Complementary therapies
* Summary
* References

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context: The mitochondrial uncoupling protein-3 (UCP3) has been implicated in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Recent evidence points toward mitochondrial aberrations as a major contributor to the development of insulin resistance and diabetes, and UCP3 is reduced in diabetes.
Objective: We compared skeletal muscle UCP3 protein levels in prediabetic subjects [i.e. impaired glucose tolerance (IGT)], diabetic patients, and healthy controls and examined whether rosiglitazone treatment was able to restore UCP3.
Patients, Design, Intervention: Ten middle-aged obese men with type 2 diabetes mellitus [age, 61.4 ± 3.1 yr; body mass index (BMI), 29.8 ± 2.9 kg/m2], nine IGT subjects (age, 59.0 ± 6.6 yr; BMI, 29.7 ± 3.0 kg/m2), and 10 age- and BMI-matched healthy controls (age, 57.3 ± 7.4 yr; BMI, 30.1 ± 3.9 kg/m2) participated in this study. After baseline comparisons, diabetic patients received rosiglitazone (2 x 4 mg/d) for 8 wk.
Main Outcome Measures: Muscle biopsies were sampled to determine UCP3 and mitochondrial protein (complex I–V) content.
Results: UCP3 protein content was significantly lower in prediabetic IGT subjects and in diabetic patients compared with healthy controls (39.0 ± 28.5, 47.2 ± 24.7, and 72.0 ± 23.7 arbitrary units, respectively; P < 0.05), whereas the levels of the mitochondrial protein complex I–V were similar between groups. Rosiglitazone treatment for 8 wk significantly increased insulin sensitivity and muscle UCP3 content (from 53.2 ± 29.9 to 66.3 ± 30.9 arbitrary units; P < 0.05).
Conclusion: We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective. To investigate lipid profiles in Psammomys obesus and relationships between lipid profile and other components of the Metabolic Syndrome.

Methods.
A total number of 49 adults with a wide range of body weight and glucose tolerance were studied in a cross-sectional analysis. Plasma cholesterol distribution profiles were measured by size exclusion lipid chromatography. Blood glucose was measured using an enzymatic glucose analyser, and plasma insulin was determined by radioimmunossay.

Results.
Obese diabetic Psammomys obesus had elevated plasma cholesterol (P=0.003) and triglyceride levels (p>0.001) compared to their lean littermates. The hypercholesterolemia was mainly due to increased circulating levels of VLDL-cholesterol (P=0.003) and LDL-cholesterol (P=0.003) in these animals. Multiple linear regression analyses revealed that body weight was independently associated with plasma cholesterol (P=0.011) and LDL concentration (P=0.009), while plasma insulin was associated with VLDL-cholesterol concentration (P=0.005). All of the variables measured exhibited continuous distributions across a wide range of phenotypes, from a normal rodent lipid profile to profound dyslipidemia.

Conclusions.
These data suggest that the dyslipidemia in obese, diabetic Psammomys obesus is closely associated with other components of the Metabolic Syndrome, including obesity and insulin resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uteroplacental insufficiency has been shown to impair insulin action and glucose homeostasis in adult offspring and may act in part via altered mitochondrial biogenesis and lipid balance in skeletal muscle. Bilateral uterine vessel ligation to induce uteroplacental insufficiency in offspring (Restricted) or sham surgery was performed on day 18 of gestation in rats. To match the litter size of Restricted offspring, a separate cohort of sham litters had litter size reduced to five at birth (Reduced Litter), which also restricted postnatal growth. Remaining litters from sham mothers were unaltered (Control). Offspring were studied at 6 mo of age. In males, both Restricted and Reduced Litter offspring had reduced gastrocnemius PPAR γ coactivator-1α (PGC-1 α) mRNA and protein, and mitochondrial transcription factor A (mtTFA) and cytochrome oxidase (COX) III mRNA (P < 0.05), whereas only Restricted had reduced skeletal muscle COX IV mRNA and protein and glycogen (P < 0.05), despite unaltered glucose tolerance, homeostasis model assessment (HOMA) and intramuscular triglycerides. In females, only gastrocnemius mtTFA mRNA was lower in Reduced Litter offspring (P < 0.05). Furthermore, glucose tolerance was not altered in any female offspring, although HOMA and intramuscular triglycerides increased in Restricted offspring (P < 0.05). It is concluded that restriction of growth due to uteroplacental insufficiency alters skeletal muscle mitochondrial biogenesis and metabolic characteristics, such as glycogen and lipid levels, in a sex-specific manner in the adult rat in the absence of impaired glucose tolerance. Furthermore, an adverse postnatal environment induced by reducing litter size also restricts growth and alters skeletal muscle mitochondrial biogenesis and metabolic characteristics in the adult rat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periodontal diseases are infectious processes that occur in the presence of bacteria, which trigger an inflammatory response. Periodontal disease is associated with many medical conditions, including diabetes mellitus and its complications (such as kidney disease). It has been described as the "sixth diabetes complication" but is often overlooked in routine diabetes management and complication screening processes. Proactive, preventative dental and diabetes self care, as well as regular dental and diabetes assessment, are important management strategies because periodontal disease contributes to the progression of impaired glucose tolerance to diabetes mellitus and to hyperglycemia in individuals with established diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE--The purpose of this study was to assess the effectiveness of a low-resource-intensive lifestyle modification program incorporating resistance training and to compare a gymnasium-based with a home-based resistance training program on diabetes diagnosis status and risk.

RESEARCH DESIGN AND METHODS--A quasi-experimental two-group study was undertaken with 122 participants with diabetes risk factors; 36.9% had impaired glucose tolerance (1GT) or impaired fasting glucose (IFG) at baseline. The intervention included a 6-week group self-management education program, a gymnasium-based or home-based 12-week resistance training program, and a 34-week maintenance program. Fasting plasma glucose (FPG) and 2-h plasma glucose, blood lipids, blood pressure, body composition, physical activity, and diet were assessed at baseline and week 52.

RESULTS--Mean 2-h plasma glucose and FPG fell by 0.34 mmol/1 (95% CI--0.60 to--0.08) and 0.15 mmol/l (-0.23 to -0.07), respectively. The proportion of participants with IFG or IGT decreased from 36.9 to 23.0% (P = 0.006). Mean weight loss was 4.07 kg (-4.99 to -3.15). The only significant difference between resistance training groups was a greater reduction in systolic blood pressure for the gymnasium-based group (P = 0.008).

CONCLUSIONS--This intervention significantly improved diabetes diagnostic status and reduced diabetes risk to a degree comparable to that of other low-resource-intensive lifestyle modification programs and more intensive interventions applied to individuals with IGT. The effects of home-based and gymnasium-based resistance training did not differ significantly.